Collatz conjecture 3n±1 as a newton binomial problem
dc.citation.epage | 144 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика. | |
dc.citation.spage | 137 | |
dc.citation.volume | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кособуцький, Петро | |
dc.contributor.author | Ребот, Дарія | |
dc.contributor.author | Kosobutskyy, Petro | |
dc.contributor.author | Rebot, Dariia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T06:35:25Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Степеневе перетворення біному Ньютона формує два рівноправні 3n±1 алгоритми перетворень чисел n які належать N. які мають по одному нескінченному циклу із одиничною нижньою межею осциляцій. Показано, що в реверсному напрямку послідовність Коллатца формується нижніми межами відповідних циклів, а останній елемент прямує до кратного трьом непарного числа. Виявлено, що для ізольованих від основного графу безмежні цикли перетворення із мінімальними амплітудами 5, 7, 17 нижніх межам осциляцій, виконуються додаткові умови. | |
dc.description.abstract | The power transformation of Newton's binomial forms two equal 3n±1 algorithms for transformations of numbers n belongs to N, each of which have one infinite cycle with a unit lower limit of oscillations. It is shown that in the reverse direction, the Kollatz sequence is formed by the lower limits of the corresponding cycles, and the last element goes to a multiple of three odd numbers. It was found that for infinite transformation cycles 3n-1 isolated from the main graph with minimum amplitudes of 5, 7, 17 lower limits of oscillations, additional conditions are fulfilled. | |
dc.format.extent | 137-144 | |
dc.format.pages | 8 | |
dc.identifier.citation | Kosobutskyy P. Collatz conjecture 3n±1 as a newton binomial problem / Petro Kosobutskyy, Dariia Rebot // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 137–144. | |
dc.identifier.citationen | Kosobutskyy P. Collatz conjecture 3n±1 as a newton binomial problem / Petro Kosobutskyy, Dariia Rebot // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 137–144. | |
dc.identifier.doi | doi.org/10.23939/cds2023.01.137 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111488 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика., 1 (5), 2023 | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (5), 2023 | |
dc.relation.references | 1. Alfred J. Menezes; Paul C. van Oorschot; Scott A. Vanstone (August 2001). Handbook of Applied Cryptography (вид. Fifth printing). CRC Press. ISBN 0-8493-8523-7. | |
dc.relation.references | 2. M. Williams. Collatz conjecture: An order machine. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2022, https://doi.org/10.20944/preprints202203.0401.v1 | |
dc.relation.references | 3. L. Green. The Negative Collatz Sequence. v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf | |
dc.relation.references | 4. M. Gardner. Mathematical games. Scientific American, Vol.223, No.4, pages 120-123, October, 1970. https://www.jstor.org/stable/24927642, Vol. 224, No. 4, pages 112 - 117, February, 1971., https://doi.org/10.1038/scientificamerican1070-120 | |
dc.relation.references | 5. C. Castro Perelman, Carbó-Dorca, R. (2022) The Collatz Conjecture and the Quantum Mechanical Harmonic Oscillator. Journal of Mathematical Chemistry, 60, 145-160. https://doi.org/10.1007/s10910-021-01296-6 [4] Carbó-Dorca, R. (2022) Mersenne Numbers, Recursive G., https://doi.org/10.1007/s10910-021-01296-6 | |
dc.relation.references | 6. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Santa Clara, Calif: The Fibonacci Association, 1993 | |
dc.relation.references | 7. Р. Kosobutskyy. Comment from article «M. Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023» https://www.refaad.com/Files/GLM/GLM-12-4-4.pdf; https://www.refaad.com/Journal/Article/1388 | |
dc.relation.references | 8. Р. Kosobutskyy. Svitohliad (2022), №5(97) ,56-61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329. | |
dc.relation.references | 9. P. Andaloro. The 3x+1 Problem and directed graphs. Fibonac Quarterly. 40(1) (2002): 43-54 | |
dc.relation.references | 10. The Simple Math Problem We Still Can’t Solve. https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/ | |
dc.relation.references | 11. N.Sloane.The On-line encyclopedia of integer sequences The OEIS Fundation іs supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeisf.org/ | |
dc.relation.referencesen | 1. Alfred J. Menezes; Paul C. van Oorschot; Scott A. Vanstone (August 2001). Handbook of Applied Cryptography (vid. Fifth printing). CRC Press. ISBN 0-8493-8523-7. | |
dc.relation.referencesen | 2. M. Williams. Collatz conjecture: An order machine. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2022, https://doi.org/10.20944/preprints202203.0401.v1 | |
dc.relation.referencesen | 3. L. Green. The Negative Collatz Sequence. v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf | |
dc.relation.referencesen | 4. M. Gardner. Mathematical games. Scientific American, Vol.223, No.4, pages 120-123, October, 1970. https://www.jstor.org/stable/24927642, Vol. 224, No. 4, pages 112 - 117, February, 1971., https://doi.org/10.1038/scientificamerican1070-120 | |
dc.relation.referencesen | 5. C. Castro Perelman, Carbó-Dorca, R. (2022) The Collatz Conjecture and the Quantum Mechanical Harmonic Oscillator. Journal of Mathematical Chemistry, 60, 145-160. https://doi.org/10.1007/s10910-021-01296-6 [4] Carbó-Dorca, R. (2022) Mersenne Numbers, Recursive G., https://doi.org/10.1007/s10910-021-01296-6 | |
dc.relation.referencesen | 6. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Santa Clara, Calif: The Fibonacci Association, 1993 | |
dc.relation.referencesen | 7. R. Kosobutskyy. Comment from article "M. Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023" https://www.refaad.com/Files/GLM/GLM-12-4-4.pdf; https://www.refaad.com/Journal/Article/1388 | |
dc.relation.referencesen | 8. R. Kosobutskyy. Svitohliad (2022), No 5(97) ,56-61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329. | |
dc.relation.referencesen | 9. P. Andaloro. The 3x+1 Problem and directed graphs. Fibonac Quarterly. 40(1) (2002): 43-54 | |
dc.relation.referencesen | 10. The Simple Math Problem We Still Can’t Solve. https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/ | |
dc.relation.referencesen | 11. N.Sloane.The On-line encyclopedia of integer sequences The OEIS Fundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeisf.org/ | |
dc.relation.uri | https://doi.org/10.20944/preprints202203.0401.v1 | |
dc.relation.uri | https://aplusclick.org/pdf/neg_collatz.pdf | |
dc.relation.uri | https://www.jstor.org/stable/24927642 | |
dc.relation.uri | https://doi.org/10.1038/scientificamerican1070-120 | |
dc.relation.uri | https://doi.org/10.1007/s10910-021-01296-6 | |
dc.relation.uri | https://www.refaad.com/Files/GLM/GLM-12-4-4.pdf; | |
dc.relation.uri | https://www.refaad.com/Journal/Article/1388 | |
dc.relation.uri | https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/ | |
dc.relation.uri | https://oeisf.org/ | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kosobutskyy P., Rebot D., 2023 | |
dc.subject | Гіпотеза Коллатца | |
dc.subject | гіпотеза 3n±1 | |
dc.subject | натуральні числа | |
dc.subject | графік | |
dc.subject | Collatz conjecture | |
dc.subject | conjecture 3n±1 | |
dc.subject | natural numbers | |
dc.subject | graph | |
dc.title | Collatz conjecture 3n±1 as a newton binomial problem | |
dc.title.alternative | Гіпотеза Коллатца 3n±1 як біноміальна проблема Ньютона | |
dc.type | Article |
Files
License bundle
1 - 1 of 1