Collatz conjecture 3n±1 as a newton binomial problem

dc.citation.epage144
dc.citation.issue1
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика.
dc.citation.spage137
dc.citation.volume5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКособуцький, Петро
dc.contributor.authorРебот, Дарія
dc.contributor.authorKosobutskyy, Petro
dc.contributor.authorRebot, Dariia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T06:35:25Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСтепеневе перетворення біному Ньютона формує два рівноправні 3n±1 алгоритми перетворень чисел n які належать N. які мають по одному нескінченному циклу із одиничною нижньою межею осциляцій. Показано, що в реверсному напрямку послідовність Коллатца формується нижніми межами відповідних циклів, а останній елемент прямує до кратного трьом непарного числа. Виявлено, що для ізольованих від основного графу безмежні цикли перетворення із мінімальними амплітудами 5, 7, 17 нижніх межам осциляцій, виконуються додаткові умови.
dc.description.abstractThe power transformation of Newton's binomial forms two equal 3n±1 algorithms for transformations of numbers n belongs to N, each of which have one infinite cycle with a unit lower limit of oscillations. It is shown that in the reverse direction, the Kollatz sequence is formed by the lower limits of the corresponding cycles, and the last element goes to a multiple of three odd numbers. It was found that for infinite transformation cycles 3n-1 isolated from the main graph with minimum amplitudes of 5, 7, 17 lower limits of oscillations, additional conditions are fulfilled.
dc.format.extent137-144
dc.format.pages8
dc.identifier.citationKosobutskyy P. Collatz conjecture 3n±1 as a newton binomial problem / Petro Kosobutskyy, Dariia Rebot // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 137–144.
dc.identifier.citationenKosobutskyy P. Collatz conjecture 3n±1 as a newton binomial problem / Petro Kosobutskyy, Dariia Rebot // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 137–144.
dc.identifier.doidoi.org/10.23939/cds2023.01.137
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111488
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика., 1 (5), 2023
dc.relation.ispartofComputer Design Systems. Theory and Practice, 1 (5), 2023
dc.relation.references1. Alfred J. Menezes; Paul C. van Oorschot; Scott A. Vanstone (August 2001). Handbook of Applied Cryptography (вид. Fifth printing). CRC Press. ISBN 0-8493-8523-7.
dc.relation.references2. M. Williams. Collatz conjecture: An order machine. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2022, https://doi.org/10.20944/preprints202203.0401.v1
dc.relation.references3. L. Green. The Negative Collatz Sequence. v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf
dc.relation.references4. M. Gardner. Mathematical games. Scientific American, Vol.223, No.4, pages 120-123, October, 1970. https://www.jstor.org/stable/24927642, Vol. 224, No. 4, pages 112 - 117, February, 1971., https://doi.org/10.1038/scientificamerican1070-120
dc.relation.references5. C. Castro Perelman, Carbó-Dorca, R. (2022) The Collatz Conjecture and the Quantum Mechanical Harmonic Oscillator. Journal of Mathematical Chemistry, 60, 145-160. https://doi.org/10.1007/s10910-021-01296-6 [4] Carbó-Dorca, R. (2022) Mersenne Numbers, Recursive G., https://doi.org/10.1007/s10910-021-01296-6
dc.relation.references6. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Santa Clara, Calif: The Fibonacci Association, 1993
dc.relation.references7. Р. Kosobutskyy. Comment from article «M. Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023» https://www.refaad.com/Files/GLM/GLM-12-4-4.pdf; https://www.refaad.com/Journal/Article/1388
dc.relation.references8. Р. Kosobutskyy. Svitohliad (2022), №5(97) ,56-61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329.
dc.relation.references9. P. Andaloro. The 3x+1 Problem and directed graphs. Fibonac Quarterly. 40(1) (2002): 43-54
dc.relation.references10. The Simple Math Problem We Still Can’t Solve. https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/
dc.relation.references11. N.Sloane.The On-line encyclopedia of integer sequences The OEIS Fundation іs supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeisf.org/
dc.relation.referencesen1. Alfred J. Menezes; Paul C. van Oorschot; Scott A. Vanstone (August 2001). Handbook of Applied Cryptography (vid. Fifth printing). CRC Press. ISBN 0-8493-8523-7.
dc.relation.referencesen2. M. Williams. Collatz conjecture: An order machine. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2022, https://doi.org/10.20944/preprints202203.0401.v1
dc.relation.referencesen3. L. Green. The Negative Collatz Sequence. v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf
dc.relation.referencesen4. M. Gardner. Mathematical games. Scientific American, Vol.223, No.4, pages 120-123, October, 1970. https://www.jstor.org/stable/24927642, Vol. 224, No. 4, pages 112 - 117, February, 1971., https://doi.org/10.1038/scientificamerican1070-120
dc.relation.referencesen5. C. Castro Perelman, Carbó-Dorca, R. (2022) The Collatz Conjecture and the Quantum Mechanical Harmonic Oscillator. Journal of Mathematical Chemistry, 60, 145-160. https://doi.org/10.1007/s10910-021-01296-6 [4] Carbó-Dorca, R. (2022) Mersenne Numbers, Recursive G., https://doi.org/10.1007/s10910-021-01296-6
dc.relation.referencesen6. B. Bondarenko. Generalized Pascal Triangles and Pyramids. Santa Clara, Calif: The Fibonacci Association, 1993
dc.relation.referencesen7. R. Kosobutskyy. Comment from article "M. Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023" https://www.refaad.com/Files/GLM/GLM-12-4-4.pdf; https://www.refaad.com/Journal/Article/1388
dc.relation.referencesen8. R. Kosobutskyy. Svitohliad (2022), No 5(97) ,56-61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329.
dc.relation.referencesen9. P. Andaloro. The 3x+1 Problem and directed graphs. Fibonac Quarterly. 40(1) (2002): 43-54
dc.relation.referencesen10. The Simple Math Problem We Still Can’t Solve. https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/
dc.relation.referencesen11. N.Sloane.The On-line encyclopedia of integer sequences The OEIS Fundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. https://oeisf.org/
dc.relation.urihttps://doi.org/10.20944/preprints202203.0401.v1
dc.relation.urihttps://aplusclick.org/pdf/neg_collatz.pdf
dc.relation.urihttps://www.jstor.org/stable/24927642
dc.relation.urihttps://doi.org/10.1038/scientificamerican1070-120
dc.relation.urihttps://doi.org/10.1007/s10910-021-01296-6
dc.relation.urihttps://www.refaad.com/Files/GLM/GLM-12-4-4.pdf;
dc.relation.urihttps://www.refaad.com/Journal/Article/1388
dc.relation.urihttps://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/
dc.relation.urihttps://oeisf.org/
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kosobutskyy P., Rebot D., 2023
dc.subjectГіпотеза Коллатца
dc.subjectгіпотеза 3n±1
dc.subjectнатуральні числа
dc.subjectграфік
dc.subjectCollatz conjecture
dc.subjectconjecture 3n±1
dc.subjectnatural numbers
dc.subjectgraph
dc.titleCollatz conjecture 3n±1 as a newton binomial problem
dc.title.alternativeГіпотеза Коллатца 3n±1 як біноміальна проблема Ньютона
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v5n1_Kosobutskyy_P-Collatz_conjecture_137-144.pdf
Size:
5.94 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v5n1_Kosobutskyy_P-Collatz_conjecture_137-144__COVER.png
Size:
390.9 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: