Research of oil sorption by natural clinoptylolite

dc.citation.epage64
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage58
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТОВ “АКС Мінерал”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLTD “AKS Mineral”
dc.contributor.authorЗнак, З. О.
dc.contributor.authorМних, Р. В.
dc.contributor.authorПиріг, М. А.
dc.contributor.authorЖук, Т. В.
dc.contributor.authorZnak, Z. O.
dc.contributor.authorMnykh, R. V.
dc.contributor.authorPyrih, M. A.
dc.contributor.authorZhuk, T. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:20Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractДосліджено сорбційну здатність природного клиноптилоліту Закарпатського родовища щодо нафти Бориславського родовища. Показано, що сорбція нафти відбувається практично одразу після її контакту з клиноптилолітом. При цьому формується фронт поглинання, який рухається вгору по шару цеоліту. На підставі аналізу процесу сорбції сформульовано висновок, що легші фракції нафти сорбуються швидше і відіграють роль “розчинника” для важчих фракцій. Показано, що сорбційна ємність вихідного клиноптилоліту дещо вища, ніж термоактивованого. Встановлено, що зі збільшенням дисперсності клиноптилоліту маса сорбованої нафти значно зростає, але сорбційна здатність різних фракцій з урахуванням висоти робочого шару відрізняється неістотно.
dc.description.abstractThe sorption capacity of natural clinoptilolite of the Transcarpathian field in relation to the Boryslav field oil has been studied. It is shown that the sorption of oil occurs almost immediately after its contact with clinoptilolite. This forms the absorption front, which moves up the zeolite layer. Based on the analysis of the sorption process, it was concluded that lighter fractions of oil are sorbed faster and play the role of "solvent" for heavier fractions. It is shown that the sorption capacity of initial clinoptilolite is slightly higher than that of thermally activated. It was found that with increasing dispersion of clinoptilolite the mass of sorbed oil increases significantly, but the sorption capacity of different fractions, taking into account the height of the working layer differs slightly.
dc.format.extent58-64
dc.format.pages7
dc.identifier.citationResearch of oil sorption by natural clinoptylolite / Z. O. Znak, R. V. Mnykh, M. A. Pyrih, T. V. Zhuk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 58–64.
dc.identifier.citationenResearch of oil sorption by natural clinoptylolite / Z. O. Znak, R. V. Mnykh, M. A. Pyrih, T. V. Zhuk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 58–64.
dc.identifier.doidoi.org/10.23939/ctas2022.02.058
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63664
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. O. Ya. Pylypchuk, T. I. Vysots'ka, T. V. Pichkur (2020). Znyzhennya vplyvu zaliznychnoho transportu na navkolyshnye seredovyshche: problema ochyshchennya gruntu vid naftoproduktiv. Ekolohichni nauky. 3(30), 113- 118. (in Ukrainian) https://doi.org/10.32846/2306-9716/2020.eco.3-30.19
dc.relation.references2. N. I. Hlibovyts'ka, L. V. Plaksiy. (2019). Efektyvnist' pohlynannya nafty sorbentamy pryrodnoho ta shtuchnoho pokhodzhennya. Naukovyy visnyk NLTU Ukrayiny, 29 (6), 76-78. (in Ukrainian) https://doi.org/10.15421/40290615
dc.relation.references3. L. V. Krychkovs'ka, Ye. A. Yelnahhar, V. L. Dubonosov. (2019). Poshuky sorbentiv dlya elyuatsiyi naftoproduktiv z vody. Visnyk Natsional'noho tekhnich- noho universytetu "KhPI" Seriya: Khimiya, khimichna tekhnolohiya ta ekolohiya. 2, 47-52. (in Ukrainian) https://doi.org/10.20998/2079-0821.2019.02.07
dc.relation.references4. M. S. Mal'ovanyy, I. M. Petrushka. (2012). Ochyshchennya stichnykh vod pryrodnymy dyspersnymy sorbentamy. L. : Vyd-vo L'viv. politekhniky, 180 р. (in Ukrainian)
dc.relation.references5. E. Barry, A.U. Mane, J.A. Libera, J.W. Elam, S.B. Darling. (2017). Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A, 5, 2929-2935. https://doi.org/10.1039/C6TA09014A
dc.relation.references6. S. Bayraktaroglu, S. Kizil, H. B. Sonmez. (2021). A highly reusable polydimethylsiloxane sorbents for oil/organic solvent clean-up from water. Journal of Environmental Chemical Engineering, 9 (5), 106002. https://doi.org/10.1016/j.jece.2021.106002
dc.relation.references7. J. Wang, H. Wang, G. Geng. (2018). Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar. Pollut. Bull. 127, 108- 116. https://doi.org/10.1016/j.marpolbul.2017.11.060
dc.relation.references8. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot. (2003). Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 10, 159-170. https://doi.org/10.1023/A:1027484117065
dc.relation.references9. P. Narayanan, A. Ravirajan, A. Umasankaran, D.G. Prakash, P.S. Kumar. (2018). Theoretical and experimental investigation on the removal of oil spill by selective sorbents. J. Ind. Eng. Chem. 63, 1-11. https://doi.org/10.1016/j.jiec.2018.01.031
dc.relation.references10. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang. (2011). Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environ. Sci. Technol. 45. 4527-4531. https://doi.org/10.1021/es2002343
dc.relation.references11. E. Piperopoulos, L. Calabrese, A. Khaskhoussi, E. Proverbio, C. Milone. (2020). Thermo-Physical Characterization of Carbon Nanotube Composite Foam for Oil Recovery Applications. Nanomaterials, 10, 86. https://doi.org/10.3390/nano10010086
dc.relation.references12. Sabir Syed. (2015). Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water. Critical Reviews in Environmental Science and Technology, 45(17), DOI: https://doi.org/10.1080/10643389.2014.1001143
dc.relation.references13. D. Zadaka-AmirNimrod, B.Y.G.Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous and Mesoporous Materials. 169, 153-159. https://doi.org/10.1016/j.micromeso.2012.11.002
dc.relation.references14. P. Qi, N. Lin, Y. Liu, J. Zhao. (2013). Improvement of oil/water selectivity by stearic acid modified expanded perlite for oil spill cleanup. J. Shanghai Jiaotong Univ., 18, 500-507. https://doi.org/10.1007/s12204-013-1426-x
dc.relation.references15. D. Zadaka-Amir, N. Bleiman, Y.G. Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater., 169, 153-159. https://doi.org/10.1016/j.micromeso.2012.11.002
dc.relation.references16. T. Paulauskienė, I. Jucikė. (2015). Aquatic oil spill cleanup using natural sorbents. Environmental Science and Pollution Research, 22, 14874-14881 https://doi.org/10.1007/s11356-015-4725-y
dc.relation.references17. A. S. Hrabarovs'ka, Z. O. Znak, R. R. Olenych. (2018). Doslidzhennya aktyvuvannya pryrodnoho klynoptylolitu nadvysokochastotnymy elektromahnitnymy vyprominyuvannyamy. Chemistry, Technology and Application of Substances, 1 (2). 21-26. (in Ukrainian) https://doi.org/10.23939/ctas2018.02.021
dc.relation.referencesen1. O. Ya. Pylypchuk, T. I. Vysots'ka, T. V. Pichkur (2020). Znyzhennya vplyvu zaliznychnoho transportu na navkolyshnye seredovyshche: problema ochyshchennya gruntu vid naftoproduktiv. Ekolohichni nauky. 3(30), 113- 118. (in Ukrainian) https://doi.org/10.32846/2306-9716/2020.eco.3-30.19
dc.relation.referencesen2. N. I. Hlibovyts'ka, L. V. Plaksiy. (2019). Efektyvnist' pohlynannya nafty sorbentamy pryrodnoho ta shtuchnoho pokhodzhennya. Naukovyy visnyk NLTU Ukrayiny, 29 (6), 76-78. (in Ukrainian) https://doi.org/10.15421/40290615
dc.relation.referencesen3. L. V. Krychkovs'ka, Ye. A. Yelnahhar, V. L. Dubonosov. (2019). Poshuky sorbentiv dlya elyuatsiyi naftoproduktiv z vody. Visnyk Natsional'noho tekhnich- noho universytetu "KhPI" Seriya: Khimiya, khimichna tekhnolohiya ta ekolohiya. 2, 47-52. (in Ukrainian) https://doi.org/10.20998/2079-0821.2019.02.07
dc.relation.referencesen4. M. S. Mal'ovanyy, I. M. Petrushka. (2012). Ochyshchennya stichnykh vod pryrodnymy dyspersnymy sorbentamy. L. : Vyd-vo L'viv. politekhniky, 180 r. (in Ukrainian)
dc.relation.referencesen5. E. Barry, A.U. Mane, J.A. Libera, J.W. Elam, S.B. Darling. (2017). Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A, 5, 2929-2935. https://doi.org/10.1039/P.6TA09014A
dc.relation.referencesen6. S. Bayraktaroglu, S. Kizil, H. B. Sonmez. (2021). A highly reusable polydimethylsiloxane sorbents for oil/organic solvent clean-up from water. Journal of Environmental Chemical Engineering, 9 (5), 106002. https://doi.org/10.1016/j.jece.2021.106002
dc.relation.referencesen7. J. Wang, H. Wang, G. Geng. (2018). Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar. Pollut. Bull. 127, 108- 116. https://doi.org/10.1016/j.marpolbul.2017.11.060
dc.relation.referencesen8. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot. (2003). Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 10, 159-170. https://doi.org/10.1023/A:1027484117065
dc.relation.referencesen9. P. Narayanan, A. Ravirajan, A. Umasankaran, D.G. Prakash, P.S. Kumar. (2018). Theoretical and experimental investigation on the removal of oil spill by selective sorbents. J. Ind. Eng. Chem. 63, 1-11. https://doi.org/10.1016/j.jiec.2018.01.031
dc.relation.referencesen10. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang. (2011). Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environ. Sci. Technol. 45. 4527-4531. https://doi.org/10.1021/es2002343
dc.relation.referencesen11. E. Piperopoulos, L. Calabrese, A. Khaskhoussi, E. Proverbio, C. Milone. (2020). Thermo-Physical Characterization of Carbon Nanotube Composite Foam for Oil Recovery Applications. Nanomaterials, 10, 86. https://doi.org/10.3390/nano10010086
dc.relation.referencesen12. Sabir Syed. (2015). Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water. Critical Reviews in Environmental Science and Technology, 45(17), DOI: https://doi.org/10.1080/10643389.2014.1001143
dc.relation.referencesen13. D. Zadaka-AmirNimrod, B.Y.G.Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous and Mesoporous Materials. 169, 153-159. https://doi.org/10.1016/j.micromeso.2012.11.002
dc.relation.referencesen14. P. Qi, N. Lin, Y. Liu, J. Zhao. (2013). Improvement of oil/water selectivity by stearic acid modified expanded perlite for oil spill cleanup. J. Shanghai Jiaotong Univ., 18, 500-507. https://doi.org/10.1007/s12204-013-1426-x
dc.relation.referencesen15. D. Zadaka-Amir, N. Bleiman, Y.G. Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater., 169, 153-159. https://doi.org/10.1016/j.micromeso.2012.11.002
dc.relation.referencesen16. T. Paulauskienė, I. Jucikė. (2015). Aquatic oil spill cleanup using natural sorbents. Environmental Science and Pollution Research, 22, 14874-14881 https://doi.org/10.1007/s11356-015-4725-y
dc.relation.referencesen17. A. S. Hrabarovs'ka, Z. O. Znak, R. R. Olenych. (2018). Doslidzhennya aktyvuvannya pryrodnoho klynoptylolitu nadvysokochastotnymy elektromahnitnymy vyprominyuvannyamy. Chemistry, Technology and Application of Substances, 1 (2). 21-26. (in Ukrainian) https://doi.org/10.23939/ctas2018.02.021
dc.relation.urihttps://doi.org/10.32846/2306-9716/2020.eco.3-30.19
dc.relation.urihttps://doi.org/10.15421/40290615
dc.relation.urihttps://doi.org/10.20998/2079-0821.2019.02.07
dc.relation.urihttps://doi.org/10.1039/C6TA09014A
dc.relation.urihttps://doi.org/10.1016/j.jece.2021.106002
dc.relation.urihttps://doi.org/10.1016/j.marpolbul.2017.11.060
dc.relation.urihttps://doi.org/10.1023/A:1027484117065
dc.relation.urihttps://doi.org/10.1016/j.jiec.2018.01.031
dc.relation.urihttps://doi.org/10.1021/es2002343
dc.relation.urihttps://doi.org/10.3390/nano10010086
dc.relation.urihttps://doi.org/10.1080/10643389.2014.1001143
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2012.11.002
dc.relation.urihttps://doi.org/10.1007/s12204-013-1426-x
dc.relation.urihttps://doi.org/10.1007/s11356-015-4725-y
dc.relation.urihttps://doi.org/10.23939/ctas2018.02.021
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectклиноптилоліт
dc.subjectнафта
dc.subjectсорбція
dc.subjectдифузія
dc.subjectсорбційна здатність
dc.subjectclinoptilolite
dc.subjectoil
dc.subjectsorption
dc.subjectdiffusion
dc.subjectsorption capacity
dc.titleResearch of oil sorption by natural clinoptylolite
dc.title.alternativeДослідження сорбції нафти природним клиноптилолітом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Znak_Z_O-Research_of_oil_sorption_by_58-64.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Znak_Z_O-Research_of_oil_sorption_by_58-64__COVER.png
Size:
473.86 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: