Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state
dc.citation.epage | 36 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 30 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний університет ім. Івана Франка | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Собечко, І. Б. | |
dc.contributor.author | Дібрівний, В. М. | |
dc.contributor.author | Горак, Ю. І. | |
dc.contributor.author | Гошко, Л. В. | |
dc.contributor.author | Sobechko, I. B. | |
dc.contributor.author | Dibrivnyi, V. M. | |
dc.contributor.author | Gorak, Yu. I. | |
dc.contributor.author | Goshko, L. V. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T07:39:18Z | |
dc.date.created | 2005-03-01 | |
dc.date.issued | 2005-03-01 | |
dc.description.abstract | З використанням прецизійного бомбового калориметра спалювання B-08-MA експериментально визначено енергії згорання 5-(4-нітрофеніл)-фуран-2-карбальдегіду, 5-(2-метил-4-нітрофеніл)-фуран-2-карбальдегіду та 5-(2-оксиметил-4-нітрофеніл)-фуран-2-карбальдегіду. На основі отриманих даних розраховано значення ентальпій згорання та утворення речовин у конденсованому стані. Наведено порівняльний аналіз експериментально визначених величин зі значеннями, теоретично розрахованими за адитивними методами розрахунку. | |
dc.description.abstract | Using the precision bomb combustion calorimeter B-08-MA, the combustion energies of 5-(4- nitrophenyl)-furan-2-carbaldehyde, 5-(2-methyl-4-nitrophenyl)-furan-2-carbaldehyde and 5-(2- oxymethyl-4-nitrophenyl)-furan-2-carbaldehyde. Based on the obtained data, the values of enthalpies of combustion and formation of substances in the condensed state are calculated. A comparative analysis of experimentally determined values with theoretically calculated values by additive calculation methods is given. | |
dc.format.extent | 30-36 | |
dc.format.pages | 7 | |
dc.identifier.citation | Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state / I. B. Sobechko, V. M. Dibrivnyi, Yu. I. Gorak, L. V. Goshko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 30–36. | |
dc.identifier.citationen | Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state / I. B. Sobechko, V. M. Dibrivnyi, Yu. I. Gorak, L. V. Goshko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 30–36. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.02.030 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63661 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.references | 1. Sun, M., Ma, C., Zhou, S.-J. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho- quinone methides with 2-indolylmethanols. Angewandte Chemie International Edition, 58 (26), 8703−8708. https://doi.org/10.1002/anie.201901955 | |
dc.relation.references | 2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita-baylis-hillman carbonates. The Journal Organic Chemistry, 83 (17), 10060−10069. https://doi.org/10.1021/acs.joc.8b01390 | |
dc.relation.references | 3. Wang, C.-S., Cheng, Y.-C., Zhou, J. (2018). Metal- catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. The Journal Organic Chemistry, 83 (22), 13861−13873. DOI: https://doi.org/10.1021/acs.joc.8b02186 | |
dc.relation.references | 4. Jiang, F., Zhao, D., Yang, X. (2017) Catalyst- controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catalysis, 7 (10), 6984−6989. https://doi.org/10.1021/acscatal.7b02279 | |
dc.relation.references | 5. Lipshutz, B. H. (1986) Five-membered heteroaromatic rings as intermediates in organic synthesis. Chemical Reviews, (86), 795−819. https://doi.org/10.1021/cr00075a005 | |
dc.relation.references | 6. Gandini, A., Belgacem, M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203-1379. https://doi.org/10.1016/S0079-6700(97)00004-X | |
dc.relation.references | 7. Karateev, A.. Koryagin, A.. Litvinov, D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 2 (1), 19-23. https://doi.org/10.23939/chcht02.01.019 | |
dc.relation.references | 8. Yunzhu Wang, Shinya Furukawa, Xinpu Fu and Ning Yan (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, 10 (1), 1-97. DOI: 10.1021/acscatal.9b03744. https://doi.org/10.1021/acscatal.9b03744 | |
dc.relation.references | 9. Hakim Siddiki S. M. A., Toyao, T. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 20, 2933-2952. https://doi.org/10.1039/C8GC00451J | |
dc.relation.references | 10. Chen Meng Qingsong Yu. Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal Molecular Sciences, 14 (9), 18488-18501. https://doi.org/10.3390/ijms140918488 | |
dc.relation.references | 11. Holla, B. S., Akberali, P. M., Shivananda, M. K. (2000). Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2- pyrazolines. Farmaco, 55 (4), 256-263. https://doi.org/10.1016/S0014-827X(00)00030-6 | |
dc.relation.references | 12. Subrahmanya, Κ. B., Shivarama, Β. H. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl- furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications, 9 (6), 625-628. DOI: https://doi.org/10.1515/HC.2003.9.6.625 | |
dc.relation.references | 13. Darren, R. Williams,. Myung-Ryul Lee, Young-Ah Song (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. Journal of the American Chemical Society, 129 (30), 9258-9259. https://doi.org/10.1021/ja072817z | |
dc.relation.references | 14. Moya-Garzón, M. D., Higueras, M., Peñalver, C. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. Journal Medicinal Chemistry, 61 (16), 7144-7167. DOI: https://doi.org/10.1021/acs.jmedchem.8b00399 | |
dc.relation.references | 15. Denton, T. T., Srivastava, P., Xia, Z. (2018). Identification of the 4-position of 3-alkynyl and 3- heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. Journal Medicinal Chemistry, 61 (16), 7065-7086. DOI: https://doi.org/10.1021/acs.jmedchem.8b00084 | |
dc.relation.references | 16. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorganic & Medicinal Chemistry Letters, 13 (19), 3323-3326. DOI: https://doi.org/10.1016/S0960-894X(03)00680-2 | |
dc.relation.references | 17. Gautam Kumara, Krishnab Vagolu Siva, Sriramb Dharmarajan, Jachaka Sanjay M. (2018). Synthesis of carbohydrazides and carboxamides as antitubercular agents. European Journal of Medicinal Chemistry, 156, 871-884. https://doi.org/10.1016/j.ejmech.2018.07.047 | |
dc.relation.references | 18. Meng Chen, Qingsong Yu, Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14 (9), 18488-18501. DOI: https://doi.org/10.3390/ijms | |
dc.relation.references | 19 . Alessandro, F. Martins, Facchi Suelen P., Follmann Heveline, D. M. (2014). Antimicrobial activity of chitosan derivatives containing n-quaternized moieties in its backbone: A Review. International Journal of Molecular Sciences, 15 (11), 20800-20832. DOI: https://doi.org/10.3390/ijms151120800 | |
dc.relation.references | 20. Chethan, P. D., Vishalakshia, B., Sathish, L. (2013). Preparation of substituted quaternized arylfuran chitosan derivativesand their antimicrobial activity. International Journal Biological Macromolecules, 59, 158-164. DOI: https://doi.org/10.1016/j.ijbiomac.2013.04.045 | |
dc.relation.references | 21. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, (2), 74-80. DOI: https://doi.org/10.22606/mocr.2017.22006 | |
dc.relation.references | 22. Dibrivnyi, V., Sobechko, I., Puniak, M. et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers. Chemistry Central Journal, 9:67, 1-8. DOI: https://doi.org/10.1186/s13065-015-0144-x | |
dc.relation.references | 23. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 13 (1), 1-11. DOI: https://doi.org/10.1186/s13065-019-0619-2 | |
dc.relation.references | 24. Vachula, A. R., Horak, Yu. I., Lytvyn, R. Z. et al. (2018). 5-Aryl-2-furaldehydes in the synthesis of tetrahydropyrimidinones by Biginelli reaction. Chemistry https://doi.org/10.1007/s10593-018-2301-3 | |
dc.relation.references | 25. CODATA (1978) Recommended key values for thermodynamics. Journal Chemical Thermodynamics, 10, 903. | |
dc.relation.references | 26. Manuel, A. V., Ribeiro da Silva, Luisa M. P. F. Amaral, Cristina, R. P. Boaventura et al. (2008). Standard molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids. Journal Chemical Thermodynamics, 40, 1226–1231. | |
dc.relation.references | 27. Cohen, N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbonhydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25 (6), 1411–1481. DOI: 10.1063/1.555988. | |
dc.relation.references | 28. Domalski, E. S., Hearinga, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-OS-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22 (4). 805–1159. | |
dc.relation.references | 29. Salmon, А.. Dalmazzone, D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions – Part 2: Carbonhydrogen. carbon-hydrogen-oxygen. and carbonhydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36 (1), 19–58. DOI: 10.1063/1.2435401. | |
dc.relation.referencesen | 1. Sun, M., Ma, C., Zhou, S.-J. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho- quinone methides with 2-indolylmethanols. Angewandte Chemie International Edition, 58 (26), 8703−8708. https://doi.org/10.1002/anie.201901955 | |
dc.relation.referencesen | 2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita-baylis-hillman carbonates. The Journal Organic Chemistry, 83 (17), 10060−10069. https://doi.org/10.1021/acs.joc.8b01390 | |
dc.relation.referencesen | 3. Wang, C.-S., Cheng, Y.-C., Zhou, J. (2018). Metal- catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. The Journal Organic Chemistry, 83 (22), 13861−13873. DOI: https://doi.org/10.1021/acs.joc.8b02186 | |
dc.relation.referencesen | 4. Jiang, F., Zhao, D., Yang, X. (2017) Catalyst- controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catalysis, 7 (10), 6984−6989. https://doi.org/10.1021/acscatal.7b02279 | |
dc.relation.referencesen | 5. Lipshutz, B. H. (1986) Five-membered heteroaromatic rings as intermediates in organic synthesis. Chemical Reviews, (86), 795−819. https://doi.org/10.1021/cr00075a005 | |
dc.relation.referencesen | 6. Gandini, A., Belgacem, M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203-1379. https://doi.org/10.1016/S0079-6700(97)00004-X | |
dc.relation.referencesen | 7. Karateev, A.. Koryagin, A.. Litvinov, D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 2 (1), 19-23. https://doi.org/10.23939/chcht02.01.019 | |
dc.relation.referencesen | 8. Yunzhu Wang, Shinya Furukawa, Xinpu Fu and Ning Yan (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, 10 (1), 1-97. DOI: 10.1021/acscatal.9b03744. https://doi.org/10.1021/acscatal.9b03744 | |
dc.relation.referencesen | 9. Hakim Siddiki S. M. A., Toyao, T. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 20, 2933-2952. https://doi.org/10.1039/P.8GC00451J | |
dc.relation.referencesen | 10. Chen Meng Qingsong Yu. Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal Molecular Sciences, 14 (9), 18488-18501. https://doi.org/10.3390/ijms140918488 | |
dc.relation.referencesen | 11. Holla, B. S., Akberali, P. M., Shivananda, M. K. (2000). Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2- pyrazolines. Farmaco, 55 (4), 256-263. https://doi.org/10.1016/S0014-827X(00)00030-6 | |
dc.relation.referencesen | 12. Subrahmanya, K. B., Shivarama, B. H. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl- furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications, 9 (6), 625-628. DOI: https://doi.org/10.1515/HC.2003.9.6.625 | |
dc.relation.referencesen | 13. Darren, R. Williams,. Myung-Ryul Lee, Young-Ah Song (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. Journal of the American Chemical Society, 129 (30), 9258-9259. https://doi.org/10.1021/ja072817z | |
dc.relation.referencesen | 14. Moya-Garzón, M. D., Higueras, M., Peñalver, C. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. Journal Medicinal Chemistry, 61 (16), 7144-7167. DOI: https://doi.org/10.1021/acs.jmedchem.8b00399 | |
dc.relation.referencesen | 15. Denton, T. T., Srivastava, P., Xia, Z. (2018). Identification of the 4-position of 3-alkynyl and 3- heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. Journal Medicinal Chemistry, 61 (16), 7065-7086. DOI: https://doi.org/10.1021/acs.jmedchem.8b00084 | |
dc.relation.referencesen | 16. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorganic & Medicinal Chemistry Letters, 13 (19), 3323-3326. DOI: https://doi.org/10.1016/S0960-894X(03)00680-2 | |
dc.relation.referencesen | 17. Gautam Kumara, Krishnab Vagolu Siva, Sriramb Dharmarajan, Jachaka Sanjay M. (2018). Synthesis of carbohydrazides and carboxamides as antitubercular agents. European Journal of Medicinal Chemistry, 156, 871-884. https://doi.org/10.1016/j.ejmech.2018.07.047 | |
dc.relation.referencesen | 18. Meng Chen, Qingsong Yu, Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14 (9), 18488-18501. DOI: https://doi.org/10.3390/ijms | |
dc.relation.referencesen | 19 . Alessandro, F. Martins, Facchi Suelen P., Follmann Heveline, D. M. (2014). Antimicrobial activity of chitosan derivatives containing n-quaternized moieties in its backbone: A Review. International Journal of Molecular Sciences, 15 (11), 20800-20832. DOI: https://doi.org/10.3390/ijms151120800 | |
dc.relation.referencesen | 20. Chethan, P. D., Vishalakshia, B., Sathish, L. (2013). Preparation of substituted quaternized arylfuran chitosan derivativesand their antimicrobial activity. International Journal Biological Macromolecules, 59, 158-164. DOI: https://doi.org/10.1016/j.ijbiomac.2013.04.045 | |
dc.relation.referencesen | 21. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, (2), 74-80. DOI: https://doi.org/10.22606/mocr.2017.22006 | |
dc.relation.referencesen | 22. Dibrivnyi, V., Sobechko, I., Puniak, M. et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers. Chemistry Central Journal, 9:67, 1-8. DOI: https://doi.org/10.1186/s13065-015-0144-x | |
dc.relation.referencesen | 23. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 13 (1), 1-11. DOI: https://doi.org/10.1186/s13065-019-0619-2 | |
dc.relation.referencesen | 24. Vachula, A. R., Horak, Yu. I., Lytvyn, R. Z. et al. (2018). 5-Aryl-2-furaldehydes in the synthesis of tetrahydropyrimidinones by Biginelli reaction. Chemistry https://doi.org/10.1007/s10593-018-2301-3 | |
dc.relation.referencesen | 25. CODATA (1978) Recommended key values for thermodynamics. Journal Chemical Thermodynamics, 10, 903. | |
dc.relation.referencesen | 26. Manuel, A. V., Ribeiro da Silva, Luisa M. P. F. Amaral, Cristina, R. P. Boaventura et al. (2008). Standard molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids. Journal Chemical Thermodynamics, 40, 1226–1231. | |
dc.relation.referencesen | 27. Cohen, N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbonhydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25 (6), 1411–1481. DOI: 10.1063/1.555988. | |
dc.relation.referencesen | 28. Domalski, E. S., Hearinga, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-OS-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22 (4). 805–1159. | |
dc.relation.referencesen | 29. Salmon, A.. Dalmazzone, D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions – Part 2: Carbonhydrogen. carbon-hydrogen-oxygen. and carbonhydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36 (1), 19–58. DOI: 10.1063/1.2435401. | |
dc.relation.uri | https://doi.org/10.1002/anie.201901955 | |
dc.relation.uri | https://doi.org/10.1021/acs.joc.8b01390 | |
dc.relation.uri | https://doi.org/10.1021/acs.joc.8b02186 | |
dc.relation.uri | https://doi.org/10.1021/acscatal.7b02279 | |
dc.relation.uri | https://doi.org/10.1021/cr00075a005 | |
dc.relation.uri | https://doi.org/10.1016/S0079-6700(97)00004-X | |
dc.relation.uri | https://doi.org/10.23939/chcht02.01.019 | |
dc.relation.uri | https://doi.org/10.1021/acscatal.9b03744 | |
dc.relation.uri | https://doi.org/10.1039/C8GC00451J | |
dc.relation.uri | https://doi.org/10.3390/ijms140918488 | |
dc.relation.uri | https://doi.org/10.1016/S0014-827X(00)00030-6 | |
dc.relation.uri | https://doi.org/10.1515/HC.2003.9.6.625 | |
dc.relation.uri | https://doi.org/10.1021/ja072817z | |
dc.relation.uri | https://doi.org/10.1021/acs.jmedchem.8b00399 | |
dc.relation.uri | https://doi.org/10.1021/acs.jmedchem.8b00084 | |
dc.relation.uri | https://doi.org/10.1016/S0960-894X(03)00680-2 | |
dc.relation.uri | https://doi.org/10.1016/j.ejmech.2018.07.047 | |
dc.relation.uri | https://doi.org/10.3390/ijms | |
dc.relation.uri | https://doi.org/10.3390/ijms151120800 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2013.04.045 | |
dc.relation.uri | https://doi.org/10.22606/mocr.2017.22006 | |
dc.relation.uri | https://doi.org/10.1186/s13065-015-0144-x | |
dc.relation.uri | https://doi.org/10.1186/s13065-019-0619-2 | |
dc.relation.uri | https://doi.org/10.1007/s10593-018-2301-3 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | 5-(4-нітрофеніл)-фуран-2-карбальдегід | |
dc.subject | 5-(2-метил-4-нітрофеніл)-фуран-2-карбальдегід | |
dc.subject | 5-(2-оксиметил-4-нітрофеніл)-фуран-2-карбальдегід | |
dc.subject | енергія згорання | |
dc.subject | ентальпія згорання | |
dc.subject | ентальпія утворення | |
dc.subject | 5-(4-nitrophenyl)-furan-2-carbaldehyde | |
dc.subject | 5-(2-methyl-4-nitrophenyl)-furan-2-carbaldehyde | |
dc.subject | 5-(2-oxymethyl-4-nitrophenyl)-furan-2-carbaldehyde | |
dc.subject | combustion energy | |
dc.subject | enthalpy of combustion | |
dc.subject | enthalpy of formation | |
dc.title | Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state | |
dc.title.alternative | Ентальпії утворення та горіння 5-(4-нітрофеніл)фуран2-карбальдегіду та його 2-метил-та 2-оксометилпохідних у конденсованому стані | |
dc.type | Article |
Files
License bundle
1 - 1 of 1