Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state

dc.citation.epage36
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage30
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет ім. Івана Франка
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorСобечко, І. Б.
dc.contributor.authorДібрівний, В. М.
dc.contributor.authorГорак, Ю. І.
dc.contributor.authorГошко, Л. В.
dc.contributor.authorSobechko, I. B.
dc.contributor.authorDibrivnyi, V. M.
dc.contributor.authorGorak, Yu. I.
dc.contributor.authorGoshko, L. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:18Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractЗ використанням прецизійного бомбового калориметра спалювання B-08-MA експериментально визначено енергії згорання 5-(4-нітрофеніл)-фуран-2-карбальдегіду, 5-(2-метил-4-нітрофеніл)-фуран-2-карбальдегіду та 5-(2-оксиметил-4-нітрофеніл)-фуран-2-карбальдегіду. На основі отриманих даних розраховано значення ентальпій згорання та утворення речовин у конденсованому стані. Наведено порівняльний аналіз експериментально визначених величин зі значеннями, теоретично розрахованими за адитивними методами розрахунку.
dc.description.abstractUsing the precision bomb combustion calorimeter B-08-MA, the combustion energies of 5-(4- nitrophenyl)-furan-2-carbaldehyde, 5-(2-methyl-4-nitrophenyl)-furan-2-carbaldehyde and 5-(2- oxymethyl-4-nitrophenyl)-furan-2-carbaldehyde. Based on the obtained data, the values of enthalpies of combustion and formation of substances in the condensed state are calculated. A comparative analysis of experimentally determined values with theoretically calculated values by additive calculation methods is given.
dc.format.extent30-36
dc.format.pages7
dc.identifier.citationEnthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state / I. B. Sobechko, V. M. Dibrivnyi, Yu. I. Gorak, L. V. Goshko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 30–36.
dc.identifier.citationenEnthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state / I. B. Sobechko, V. M. Dibrivnyi, Yu. I. Gorak, L. V. Goshko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 30–36.
dc.identifier.doidoi.org/10.23939/ctas2022.02.030
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63661
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Sun, M., Ma, C., Zhou, S.-J. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho- quinone methides with 2-indolylmethanols. Angewandte Chemie International Edition, 58 (26), 8703−8708. https://doi.org/10.1002/anie.201901955
dc.relation.references2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita-baylis-hillman carbonates. The Journal Organic Chemistry, 83 (17), 10060−10069. https://doi.org/10.1021/acs.joc.8b01390
dc.relation.references3. Wang, C.-S., Cheng, Y.-C., Zhou, J. (2018). Metal- catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. The Journal Organic Chemistry, 83 (22), 13861−13873. DOI: https://doi.org/10.1021/acs.joc.8b02186
dc.relation.references4. Jiang, F., Zhao, D., Yang, X. (2017) Catalyst- controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catalysis, 7 (10), 6984−6989. https://doi.org/10.1021/acscatal.7b02279
dc.relation.references5. Lipshutz, B. H. (1986) Five-membered heteroaromatic rings as intermediates in organic synthesis. Chemical Reviews, (86), 795−819. https://doi.org/10.1021/cr00075a005
dc.relation.references6. Gandini, A., Belgacem, M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203-1379. https://doi.org/10.1016/S0079-6700(97)00004-X
dc.relation.references7. Karateev, A.. Koryagin, A.. Litvinov, D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 2 (1), 19-23. https://doi.org/10.23939/chcht02.01.019
dc.relation.references8. Yunzhu Wang, Shinya Furukawa, Xinpu Fu and Ning Yan (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, 10 (1), 1-97. DOI: 10.1021/acscatal.9b03744. https://doi.org/10.1021/acscatal.9b03744
dc.relation.references9. Hakim Siddiki S. M. A., Toyao, T. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 20, 2933-2952. https://doi.org/10.1039/C8GC00451J
dc.relation.references10. Chen Meng Qingsong Yu. Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal Molecular Sciences, 14 (9), 18488-18501. https://doi.org/10.3390/ijms140918488
dc.relation.references11. Holla, B. S., Akberali, P. M., Shivananda, M. K. (2000). Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2- pyrazolines. Farmaco, 55 (4), 256-263. https://doi.org/10.1016/S0014-827X(00)00030-6
dc.relation.references12. Subrahmanya, Κ. B., Shivarama, Β. H. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl- furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications, 9 (6), 625-628. DOI: https://doi.org/10.1515/HC.2003.9.6.625
dc.relation.references13. Darren, R. Williams,. Myung-Ryul Lee, Young-Ah Song (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. Journal of the American Chemical Society, 129 (30), 9258-9259. https://doi.org/10.1021/ja072817z
dc.relation.references14. Moya-Garzón, M. D., Higueras, M., Peñalver, C. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. Journal Medicinal Chemistry, 61 (16), 7144-7167. DOI: https://doi.org/10.1021/acs.jmedchem.8b00399
dc.relation.references15. Denton, T. T., Srivastava, P., Xia, Z. (2018). Identification of the 4-position of 3-alkynyl and 3- heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. Journal Medicinal Chemistry, 61 (16), 7065-7086. DOI: https://doi.org/10.1021/acs.jmedchem.8b00084
dc.relation.references16. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorganic & Medicinal Chemistry Letters, 13 (19), 3323-3326. DOI: https://doi.org/10.1016/S0960-894X(03)00680-2
dc.relation.references17. Gautam Kumara, Krishnab Vagolu Siva, Sriramb Dharmarajan, Jachaka Sanjay M. (2018). Synthesis of carbohydrazides and carboxamides as antitubercular agents. European Journal of Medicinal Chemistry, 156, 871-884. https://doi.org/10.1016/j.ejmech.2018.07.047
dc.relation.references18. Meng Chen, Qingsong Yu, Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14 (9), 18488-18501. DOI: https://doi.org/10.3390/ijms
dc.relation.references19 . Alessandro, F. Martins, Facchi Suelen P., Follmann Heveline, D. M. (2014). Antimicrobial activity of chitosan derivatives containing n-quaternized moieties in its backbone: A Review. International Journal of Molecular Sciences, 15 (11), 20800-20832. DOI: https://doi.org/10.3390/ijms151120800
dc.relation.references20. Chethan, P. D., Vishalakshia, B., Sathish, L. (2013). Preparation of substituted quaternized arylfuran chitosan derivativesand their antimicrobial activity. International Journal Biological Macromolecules, 59, 158-164. DOI: https://doi.org/10.1016/j.ijbiomac.2013.04.045
dc.relation.references21. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, (2), 74-80. DOI: https://doi.org/10.22606/mocr.2017.22006
dc.relation.references22. Dibrivnyi, V., Sobechko, I., Puniak, M. et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers. Chemistry Central Journal, 9:67, 1-8. DOI: https://doi.org/10.1186/s13065-015-0144-x
dc.relation.references23. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 13 (1), 1-11. DOI: https://doi.org/10.1186/s13065-019-0619-2
dc.relation.references24. Vachula, A. R., Horak, Yu. I., Lytvyn, R. Z. et al. (2018). 5-Aryl-2-furaldehydes in the synthesis of tetrahydropyrimidinones by Biginelli reaction. Chemistry https://doi.org/10.1007/s10593-018-2301-3
dc.relation.references25. CODATA (1978) Recommended key values for thermodynamics. Journal Chemical Thermodynamics, 10, 903.
dc.relation.references26. Manuel, A. V., Ribeiro da Silva, Luisa M. P. F. Amaral, Cristina, R. P. Boaventura et al. (2008). Standard molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids. Journal Chemical Thermodynamics, 40, 1226–1231.
dc.relation.references27. Cohen, N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbonhydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25 (6), 1411–1481. DOI: 10.1063/1.555988.
dc.relation.references28. Domalski, E. S., Hearinga, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-OS-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22 (4). 805–1159.
dc.relation.references29. Salmon, А.. Dalmazzone, D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions – Part 2: Carbonhydrogen. carbon-hydrogen-oxygen. and carbonhydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36 (1), 19–58. DOI: 10.1063/1.2435401.
dc.relation.referencesen1. Sun, M., Ma, C., Zhou, S.-J. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho- quinone methides with 2-indolylmethanols. Angewandte Chemie International Edition, 58 (26), 8703−8708. https://doi.org/10.1002/anie.201901955
dc.relation.referencesen2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita-baylis-hillman carbonates. The Journal Organic Chemistry, 83 (17), 10060−10069. https://doi.org/10.1021/acs.joc.8b01390
dc.relation.referencesen3. Wang, C.-S., Cheng, Y.-C., Zhou, J. (2018). Metal- catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. The Journal Organic Chemistry, 83 (22), 13861−13873. DOI: https://doi.org/10.1021/acs.joc.8b02186
dc.relation.referencesen4. Jiang, F., Zhao, D., Yang, X. (2017) Catalyst- controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catalysis, 7 (10), 6984−6989. https://doi.org/10.1021/acscatal.7b02279
dc.relation.referencesen5. Lipshutz, B. H. (1986) Five-membered heteroaromatic rings as intermediates in organic synthesis. Chemical Reviews, (86), 795−819. https://doi.org/10.1021/cr00075a005
dc.relation.referencesen6. Gandini, A., Belgacem, M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203-1379. https://doi.org/10.1016/S0079-6700(97)00004-X
dc.relation.referencesen7. Karateev, A.. Koryagin, A.. Litvinov, D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 2 (1), 19-23. https://doi.org/10.23939/chcht02.01.019
dc.relation.referencesen8. Yunzhu Wang, Shinya Furukawa, Xinpu Fu and Ning Yan (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, 10 (1), 1-97. DOI: 10.1021/acscatal.9b03744. https://doi.org/10.1021/acscatal.9b03744
dc.relation.referencesen9. Hakim Siddiki S. M. A., Toyao, T. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 20, 2933-2952. https://doi.org/10.1039/P.8GC00451J
dc.relation.referencesen10. Chen Meng Qingsong Yu. Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal Molecular Sciences, 14 (9), 18488-18501. https://doi.org/10.3390/ijms140918488
dc.relation.referencesen11. Holla, B. S., Akberali, P. M., Shivananda, M. K. (2000). Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2- pyrazolines. Farmaco, 55 (4), 256-263. https://doi.org/10.1016/S0014-827X(00)00030-6
dc.relation.referencesen12. Subrahmanya, K. B., Shivarama, B. H. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl- furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications, 9 (6), 625-628. DOI: https://doi.org/10.1515/HC.2003.9.6.625
dc.relation.referencesen13. Darren, R. Williams,. Myung-Ryul Lee, Young-Ah Song (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. Journal of the American Chemical Society, 129 (30), 9258-9259. https://doi.org/10.1021/ja072817z
dc.relation.referencesen14. Moya-Garzón, M. D., Higueras, M., Peñalver, C. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. Journal Medicinal Chemistry, 61 (16), 7144-7167. DOI: https://doi.org/10.1021/acs.jmedchem.8b00399
dc.relation.referencesen15. Denton, T. T., Srivastava, P., Xia, Z. (2018). Identification of the 4-position of 3-alkynyl and 3- heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. Journal Medicinal Chemistry, 61 (16), 7065-7086. DOI: https://doi.org/10.1021/acs.jmedchem.8b00084
dc.relation.referencesen16. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorganic & Medicinal Chemistry Letters, 13 (19), 3323-3326. DOI: https://doi.org/10.1016/S0960-894X(03)00680-2
dc.relation.referencesen17. Gautam Kumara, Krishnab Vagolu Siva, Sriramb Dharmarajan, Jachaka Sanjay M. (2018). Synthesis of carbohydrazides and carboxamides as antitubercular agents. European Journal of Medicinal Chemistry, 156, 871-884. https://doi.org/10.1016/j.ejmech.2018.07.047
dc.relation.referencesen18. Meng Chen, Qingsong Yu, Hongmin Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14 (9), 18488-18501. DOI: https://doi.org/10.3390/ijms
dc.relation.referencesen19 . Alessandro, F. Martins, Facchi Suelen P., Follmann Heveline, D. M. (2014). Antimicrobial activity of chitosan derivatives containing n-quaternized moieties in its backbone: A Review. International Journal of Molecular Sciences, 15 (11), 20800-20832. DOI: https://doi.org/10.3390/ijms151120800
dc.relation.referencesen20. Chethan, P. D., Vishalakshia, B., Sathish, L. (2013). Preparation of substituted quaternized arylfuran chitosan derivativesand their antimicrobial activity. International Journal Biological Macromolecules, 59, 158-164. DOI: https://doi.org/10.1016/j.ijbiomac.2013.04.045
dc.relation.referencesen21. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, (2), 74-80. DOI: https://doi.org/10.22606/mocr.2017.22006
dc.relation.referencesen22. Dibrivnyi, V., Sobechko, I., Puniak, M. et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers. Chemistry Central Journal, 9:67, 1-8. DOI: https://doi.org/10.1186/s13065-015-0144-x
dc.relation.referencesen23. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 13 (1), 1-11. DOI: https://doi.org/10.1186/s13065-019-0619-2
dc.relation.referencesen24. Vachula, A. R., Horak, Yu. I., Lytvyn, R. Z. et al. (2018). 5-Aryl-2-furaldehydes in the synthesis of tetrahydropyrimidinones by Biginelli reaction. Chemistry https://doi.org/10.1007/s10593-018-2301-3
dc.relation.referencesen25. CODATA (1978) Recommended key values for thermodynamics. Journal Chemical Thermodynamics, 10, 903.
dc.relation.referencesen26. Manuel, A. V., Ribeiro da Silva, Luisa M. P. F. Amaral, Cristina, R. P. Boaventura et al. (2008). Standard molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids. Journal Chemical Thermodynamics, 40, 1226–1231.
dc.relation.referencesen27. Cohen, N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbonhydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25 (6), 1411–1481. DOI: 10.1063/1.555988.
dc.relation.referencesen28. Domalski, E. S., Hearinga, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-OS-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22 (4). 805–1159.
dc.relation.referencesen29. Salmon, A.. Dalmazzone, D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions – Part 2: Carbonhydrogen. carbon-hydrogen-oxygen. and carbonhydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36 (1), 19–58. DOI: 10.1063/1.2435401.
dc.relation.urihttps://doi.org/10.1002/anie.201901955
dc.relation.urihttps://doi.org/10.1021/acs.joc.8b01390
dc.relation.urihttps://doi.org/10.1021/acs.joc.8b02186
dc.relation.urihttps://doi.org/10.1021/acscatal.7b02279
dc.relation.urihttps://doi.org/10.1021/cr00075a005
dc.relation.urihttps://doi.org/10.1016/S0079-6700(97)00004-X
dc.relation.urihttps://doi.org/10.23939/chcht02.01.019
dc.relation.urihttps://doi.org/10.1021/acscatal.9b03744
dc.relation.urihttps://doi.org/10.1039/C8GC00451J
dc.relation.urihttps://doi.org/10.3390/ijms140918488
dc.relation.urihttps://doi.org/10.1016/S0014-827X(00)00030-6
dc.relation.urihttps://doi.org/10.1515/HC.2003.9.6.625
dc.relation.urihttps://doi.org/10.1021/ja072817z
dc.relation.urihttps://doi.org/10.1021/acs.jmedchem.8b00399
dc.relation.urihttps://doi.org/10.1021/acs.jmedchem.8b00084
dc.relation.urihttps://doi.org/10.1016/S0960-894X(03)00680-2
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2018.07.047
dc.relation.urihttps://doi.org/10.3390/ijms
dc.relation.urihttps://doi.org/10.3390/ijms151120800
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2013.04.045
dc.relation.urihttps://doi.org/10.22606/mocr.2017.22006
dc.relation.urihttps://doi.org/10.1186/s13065-015-0144-x
dc.relation.urihttps://doi.org/10.1186/s13065-019-0619-2
dc.relation.urihttps://doi.org/10.1007/s10593-018-2301-3
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subject5-(4-нітрофеніл)-фуран-2-карбальдегід
dc.subject5-(2-метил-4-нітрофеніл)-фуран-2-карбальдегід
dc.subject5-(2-оксиметил-4-нітрофеніл)-фуран-2-карбальдегід
dc.subjectенергія згорання
dc.subjectентальпія згорання
dc.subjectентальпія утворення
dc.subject5-(4-nitrophenyl)-furan-2-carbaldehyde
dc.subject5-(2-methyl-4-nitrophenyl)-furan-2-carbaldehyde
dc.subject5-(2-oxymethyl-4-nitrophenyl)-furan-2-carbaldehyde
dc.subjectcombustion energy
dc.subjectenthalpy of combustion
dc.subjectenthalpy of formation
dc.titleEnthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state
dc.title.alternativeЕнтальпії утворення та горіння 5-(4-нітрофеніл)фуран2-карбальдегіду та його 2-метил-та 2-оксометилпохідних у конденсованому стані
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Sobechko_I_B-Enthalpy_of_formation_30-36.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Sobechko_I_B-Enthalpy_of_formation_30-36__COVER.png
Size:
475.78 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: