Evaluation of multimodal data synchronization tools

dc.citation.epage111
dc.citation.issue3
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage104
dc.contributor.affiliationНаціональний університет "Львівська політехніка"
dc.contributor.affiliationНаціональний університет "Львівська політехніка"
dc.contributor.affiliationНаціональний університет "Львівська політехніка"
dc.contributor.affiliationНаціональний університет "Львівська політехніка"
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБасистюк, Олег
dc.contributor.authorРибчак, Зоряна
dc.contributor.authorЗавущак, Ірина
dc.contributor.authorМарікуца, Уляна
dc.contributor.authorBasystiuk, Oleh
dc.contributor.authorRybchak, Zoriana
dc.contributor.authorZavushcha, Iryna
dc.contributor.authorMarikuts, Uliana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-16T08:40:51Z
dc.description.abstractПостійне зростання обсягів даних вимагає розроблення ефективних методів управ- ління, опрацювання та зберігання інформації. Крім того, доцільно застосовувати мультимодальні підходи агрегації знань для отримання додаткових знань. Зазвичай проблема ефективного оброблення мультимодальних даних пов’язана з високоякісним попереднім обробленням даних. Одним із найважливіших етапів попереднього оброблення є синхронізація мультимодальних потоків даних для аналізу складних взаємодій у різних типах даних. У статті оцінено відомі підходи до синхронізації. Увагу зосереджено на стратегіях, основаних на класифікаторах реального часу, побудованих на комплексних платформах для інтеграції та управління даними. Після синхронізації мультимодальних наборів ключовими етапами є злиття даних, ідентифікація даних у різних каналах, таких як текст, відео та аудіо. Результати демонструють здійсненність запропонованого підходу синхронізації для вияв- лення тонких зв’язків між різними наборами даних. Також запропоновано архітектурне рішення для інтеграції запропонованого методу в наявні мультимодальні конвеєри опрацювання даних. Дослідження сприяє розробленню інструментів синхронізації для мультимодального аналізу даних у динамічних сценаріях реального світу.
dc.description.abstractThe constant growth of data volumes requires the development of effective methods for managing, processing, and storing information. Additionally, it is advisable to apply multimodal approaches for knowledge aggregation to extract additional knowledge. Usually, the problem of efficient processing of multimodal data is associated with high-quality data preprocessing. One of the most critical preprocessing steps is synchronizing multimodal data streams to analyze complex interactions in different data types. In this article, we evaluate existing approaches to synchronization, focusing on strategies based on real-time classifiers, which are based on comprehensive platforms for data integration and management. After the synchronization of multimodal sets, the key stage is data fusion, data identification in different channels, such as text, video, and audio. The results demonstrate the feasibility of the proposed synchronization approach for revealing subtle relationships between various data sets. An architectural solution was also suggested to integrate the proposed method into existing multimodal data processing pipelines. This work contributes to developing synchronization tools for multimodal data analysis in dynamic realworld scenarios.
dc.format.extent104-111
dc.format.pages8
dc.identifier.citationEvaluation of multimodal data synchronization tools / Oleh Basystiuk, Zoriana Rybchak, Iryna Zavushcha, Uliana Marikuts // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 104–111.
dc.identifier.citation2015Evaluation of multimodal data synchronization tools / Basystiuk O. та ін. // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 104–111.
dc.identifier.citationenAPABasystiuk, O., Rybchak, Z., Zavushcha, I., & Marikuts, U. (2024). Evaluation of multimodal data synchronization tools. Computer Systems of Design. Theory and Practice, 6(3), 104-111. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOBasystiuk O., Rybchak Z., Zavushcha I., Marikuts U. (2024) Evaluation of multimodal data synchronization tools. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 104-111.
dc.identifier.doihttps://doi.org/10.23939/cds2024.03.104
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124085
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 3 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 3 (6), 2024
dc.relation.references[1] Jun, S. Technology Integration and Analysis Using Boosting and Ensemble. J. Open Innov. Technol. Mark. Complex. 2021, 7, 27. https://doi.org/10.3390/joitmc7010027
dc.relation.references[2] Chen, Z., Feng X., Zhang S. Emotion detection and face recognition of drivers in autonomous vehicles in IoT platform, Image and Vision Computing, Vol. 128, 2022. https://doi.org/10.1016/j.imavis.2022.104569.
dc.relation.references[3] Yih-Shiuan L., Wang C. (2024). ―A Cyber-Physical Testbed for IoT Microgrid Design and Validation‖, Electronics, 13, No. 7: 1181. https://doi.org/10.3390/electronics13071181
dc.relation.references[4] Havryliuk, M., Kaminskyy, R., Yemets, K., Lisovych, T. (2023). Interactive Information System for Automated Identification of Operator Personnel by Schulte Tables Based on Individual Time Series. In: Hu, Z., Zhang, Q., He, M. (eds) Advances in Artificial Systems for Logistics Engineering, Vol. 180. Springer, Cham. DOI:10.1007/978-3-031-36115-9_34
dc.relation.references[5] Basystiuk, O., Melnykova, N. and Rybchak, Z., 2023, June. Machine Learning Methods and Tools for Facial Recognition Based on Multimodal Approach. In MoMLeT+ DS (pp. 161–170).
dc.relation.references[6] Strubytskyi R., Shakhovska N., Method and models for sentiment analysis and hidden propaganda finding, Computers in Human Behavior Reports, Vol. 12. https://doi.org/10.1016/j.chbr.2023.100328.
dc.relation.references[7] Dai, Z., Zakka, V. G., Manso, L. J.; Rudorfer, M.; Bernardet, U.; Zumer, J.; Kavakli-Thorne, M. Sensors, Techniques, and Future Trends of Human-Engagement-Enabled Applications: A Review. Algorithms 2024, 17, 560. https://doi.org/10.3390/a17120560
dc.relation.references[8] Chen H., Ma H., Chu X., Xue D., Anomaly detection and critical attributes identification for products with multiple operating conditions based on isolation forest, Advanced Engineering Informatics, Vol. 46. https://doi.org/10.1016/j.aei.2020.101139.
dc.relation.references[9] Havryliuk, M., Hovdysh, N., Tolstyak, Y., Chopyak, V., & Kustra, N. (2023, November). Investigation of PNN Optimization Methods to Improve Classification Performance in Transplantation Medicine. In IDDM(pp. 338–345).
dc.relation.references[10] Basystiuk O., Melnykova N., Rybchak Z. ―Multimodal Learning Analytics: An Overview of the Data Collection Methodology‖, IEEE 18th International Conference on Computer Science and Information Technologies, Lviv, Ukraine, 2023, pp. 1–4. DOI: 10.1109/CSIT61576.2023.10324177.
dc.relation.references[11] Loaiza-Arias, M.; Álvarez-Meza, A.M.; Cárdenas-Peña, D.; Orozco-Gutierrez, Á.Á.; Castellanos- Dominguez, G. Multimodal Explainability Using Class Activation Maps and Canonical Correlation for MI-EEG Deep Learning Classification. Appl. Sci., 2024, 14, 11208. https://doi.org/10.3390/app142311208
dc.relation.references[12] Su, Q.; Yao, Y.; Chen, C.; Chen, B. Generating a 30 m Hourly Land Surface Temperatures Based on Spatial Fusion Model and Machine Learning Algorithm. Sensors, 2024, 24, 7424. https://doi.org/10.3390/s2423742
dc.relation.references[13] Yakovyna V., Shakhovska N. ―Software failure time series prediction with RBF, GRNN, and LSTM neural networks‖, Procedia Computer Science 207(4): 837–847. DOI:10.1016/j.procs.2022.09.139.
dc.relation.references[14] Paterega, I., Melnykova, N. (2024). Imbalanced data: a comparative analysis of classification enhancements using augmented data. European Science, 3(sge28-03), 54–72. https://doi.org/10.30890/2709-2313.2024-28-00-017.
dc.relation.references[15] Basystiuk O., Melnykova N., Rybchak Z. ―Multimodal Learning Analytics: An Overview of the Data Collection Methodology‖, 2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT), Lviv, Ukraine, 2023, pp. 1–4. DOI: 10.1109/CSIT61576.2023.10324177.
dc.relation.references[16] Merino-Monge, M., Molina-Cantero, A. J., et al. (2020). An easy-to-use multi-source recording and synchronization software for experimental trials. IEEE Access, 8, 200618-200634.
dc.relation.references[17] Govindarajan, Y., Ganesan, V. P. A., & Ramesh, D. (2024). Multi-modal biometric authentication: Leveraging shared layer architectures for enhanced security. arXiv preprint arXiv:2411.02112..
dc.relation.references[18] Muhammad, T. (2022). A Comprehensive Study on Software-Defined Load Balancers: Architectural Flexibility & Application Service Delivery in On-Premises Ecosystems. International Journal of Computer Science and Technology, 6(1), 1–24.
dc.relation.references[19] Zhaoyang N., Zhong G., Yu H. ―A review on the attention mechanism of deep learning‖, Neurocomputing, 452 (2021): 48–62.
dc.relation.references[20] Basystiuk O., Melnykova N., Rybchak Z. ―Detecting Multimodal Data in Information System‖, CSIT-2024: Computer Science and Information Technologies, 16–19 October 2024, Lviv, Ukraine.
dc.relation.referencesen[1] Jun, S. Technology Integration and Analysis Using Boosting and Ensemble. J. Open Innov. Technol. Mark. Complex. 2021, 7, 27. https://doi.org/10.3390/joitmc7010027
dc.relation.referencesen[2] Chen, Z., Feng X., Zhang S. Emotion detection and face recognition of drivers in autonomous vehicles in IoT platform, Image and Vision Computing, Vol. 128, 2022. https://doi.org/10.1016/j.imavis.2022.104569.
dc.relation.referencesen[3] Yih-Shiuan L., Wang C. (2024). ―A Cyber-Physical Testbed for IoT Microgrid Design and Validation‖, Electronics, 13, No. 7: 1181. https://doi.org/10.3390/electronics13071181
dc.relation.referencesen[4] Havryliuk, M., Kaminskyy, R., Yemets, K., Lisovych, T. (2023). Interactive Information System for Automated Identification of Operator Personnel by Schulte Tables Based on Individual Time Series. In: Hu, Z., Zhang, Q., He, M. (eds) Advances in Artificial Systems for Logistics Engineering, Vol. 180. Springer, Cham. DOI:10.1007/978-3-031-36115-9_34
dc.relation.referencesen[5] Basystiuk, O., Melnykova, N. and Rybchak, Z., 2023, June. Machine Learning Methods and Tools for Facial Recognition Based on Multimodal Approach. In MoMLeT+ DS (pp. 161–170).
dc.relation.referencesen[6] Strubytskyi R., Shakhovska N., Method and models for sentiment analysis and hidden propaganda finding, Computers in Human Behavior Reports, Vol. 12. https://doi.org/10.1016/j.chbr.2023.100328.
dc.relation.referencesen[7] Dai, Z., Zakka, V. G., Manso, L. J.; Rudorfer, M.; Bernardet, U.; Zumer, J.; Kavakli-Thorne, M. Sensors, Techniques, and Future Trends of Human-Engagement-Enabled Applications: A Review. Algorithms 2024, 17, 560. https://doi.org/10.3390/a17120560
dc.relation.referencesen[8] Chen H., Ma H., Chu X., Xue D., Anomaly detection and critical attributes identification for products with multiple operating conditions based on isolation forest, Advanced Engineering Informatics, Vol. 46. https://doi.org/10.1016/j.aei.2020.101139.
dc.relation.referencesen[9] Havryliuk, M., Hovdysh, N., Tolstyak, Y., Chopyak, V., & Kustra, N. (2023, November). Investigation of PNN Optimization Methods to Improve Classification Performance in Transplantation Medicine. In IDDM(pp. 338–345).
dc.relation.referencesen[10] Basystiuk O., Melnykova N., Rybchak Z. ―Multimodal Learning Analytics: An Overview of the Data Collection Methodology‖, IEEE 18th International Conference on Computer Science and Information Technologies, Lviv, Ukraine, 2023, pp. 1–4. DOI: 10.1109/CSIT61576.2023.10324177.
dc.relation.referencesen[11] Loaiza-Arias, M.; Álvarez-Meza, A.M.; Cárdenas-Peña, D.; Orozco-Gutierrez, Á.Á.; Castellanos- Dominguez, G. Multimodal Explainability Using Class Activation Maps and Canonical Correlation for MI-EEG Deep Learning Classification. Appl. Sci., 2024, 14, 11208. https://doi.org/10.3390/app142311208
dc.relation.referencesen[12] Su, Q.; Yao, Y.; Chen, C.; Chen, B. Generating a 30 m Hourly Land Surface Temperatures Based on Spatial Fusion Model and Machine Learning Algorithm. Sensors, 2024, 24, 7424. https://doi.org/10.3390/s2423742
dc.relation.referencesen[13] Yakovyna V., Shakhovska N. ―Software failure time series prediction with RBF, GRNN, and LSTM neural networks‖, Procedia Computer Science 207(4): 837–847. DOI:10.1016/j.procs.2022.09.139.
dc.relation.referencesen[14] Paterega, I., Melnykova, N. (2024). Imbalanced data: a comparative analysis of classification enhancements using augmented data. European Science, 3(sge28-03), 54–72. https://doi.org/10.30890/2709-2313.2024-28-00-017.
dc.relation.referencesen[15] Basystiuk O., Melnykova N., Rybchak Z. ―Multimodal Learning Analytics: An Overview of the Data Collection Methodology‖, 2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT), Lviv, Ukraine, 2023, pp. 1–4. DOI: 10.1109/CSIT61576.2023.10324177.
dc.relation.referencesen[16] Merino-Monge, M., Molina-Cantero, A. J., et al. (2020). An easy-to-use multi-source recording and synchronization software for experimental trials. IEEE Access, 8, 200618-200634.
dc.relation.referencesen[17] Govindarajan, Y., Ganesan, V. P. A., & Ramesh, D. (2024). Multi-modal biometric authentication: Leveraging shared layer architectures for enhanced security. arXiv preprint arXiv:2411.02112..
dc.relation.referencesen[18] Muhammad, T. (2022). A Comprehensive Study on Software-Defined Load Balancers: Architectural Flexibility & Application Service Delivery in On-Premises Ecosystems. International Journal of Computer Science and Technology, 6(1), 1–24.
dc.relation.referencesen[19] Zhaoyang N., Zhong G., Yu H. ―A review on the attention mechanism of deep learning‖, Neurocomputing, 452 (2021): 48–62.
dc.relation.referencesen[20] Basystiuk O., Melnykova N., Rybchak Z. ―Detecting Multimodal Data in Information System‖, CSIT-2024: Computer Science and Information Technologies, 16–19 October 2024, Lviv, Ukraine.
dc.relation.urihttps://doi.org/10.3390/joitmc7010027
dc.relation.urihttps://doi.org/10.1016/j.imavis.2022.104569
dc.relation.urihttps://doi.org/10.3390/electronics13071181
dc.relation.urihttps://doi.org/10.1016/j.chbr.2023.100328
dc.relation.urihttps://doi.org/10.3390/a17120560
dc.relation.urihttps://doi.org/10.1016/j.aei.2020.101139
dc.relation.urihttps://doi.org/10.3390/app142311208
dc.relation.urihttps://doi.org/10.3390/s2423742
dc.relation.urihttps://doi.org/10.30890/2709-2313.2024-28-00-017
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Basystiuk O., Rybchak Z., Zavushchak I., Marikutsa U., 2024
dc.subjectмультимодальні дані
dc.subjectаналіз даних
dc.subjectінструменти синхронізації
dc.subjectпрограма реального часу
dc.subjectмашинне навчання
dc.subjectmultimodal data
dc.subjectdata analysis
dc.subjectsynchronization tools
dc.subjectreal-time application
dc.subjectmachine learning
dc.titleEvaluation of multimodal data synchronization tools
dc.title.alternativeОцінка інструментів мультимодальної синхронізації даних
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n3_Basystiuk_O-Evaluation_of_multimodal_104-111.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: