Suspension oligomerization of the С9 fraction of diesel fuel pyrolysis by products using n-(tert-butylperoxymethyl)-4-chloroaniline

dc.citation.epage79
dc.citation.issue2
dc.citation.spage73
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСубтельний, Р. О.
dc.contributor.authorСціра, В. О.
dc.contributor.authorКічура, Д. Б.
dc.contributor.authorДзіняк, Б. О.
dc.contributor.authorSubtelnyi, R. O.
dc.contributor.authorStsira, V. O.
dc.contributor.authorKichura, D. B.
dc.contributor.authorDzinyak, B. O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:21Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractДосліджено суспензійну олігомеризацію ненасичених вуглеводнів фракції С9 рідких побіч- них продуктів піролізу дизельного палива, ініційовану N-(трет-бутилпероксиметил)-4- хлораніліном. З’ясовано вплив умов реакції (температури і тривалості реакції, інтенсивності перемішування, вмісту дисперсної фази, концентрації ініціатора) на вихід і фізико-хімічні характеристики вуглеводневих смол. Вибрано оптимальні технологічні параметри процесу олігомеризації фракції С9. Визначено залежність відносної та динамічної в’язкості розчинів отриманих вуглеводневих смол від температури.
dc.description.abstractThe suspension oligomerization of the unsaturated hydrocarbons of the C9 fraction of liquid by-products of diesel fuel pyrolysis initiated by N-(tert-Butylperoxymethyl)-4- chloroaniline was investigated. The influence of reaction conditions (reaction temperature and time, mixing intensity, dispersed phase content, initiator concentration) on the yield and physico-chemical characteristics of hydrocarbon resins was determined. The optimal reaction conditions were selected. The temperature dependence of the relative and dynamic viscosity of the obtained hydrocarbon resin solutions was determined.
dc.format.extent73-79
dc.format.pages7
dc.identifier.citationSuspension oligomerization of the С9 fraction of diesel fuel pyrolysis by products using n-(tert-butylperoxymethyl)-4-chloroaniline / R. O. Subtelnyi, V. O. Stsira, D. B. Kichura, B. O. Dzinyak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 73–79.
dc.identifier.citation2015Suspension oligomerization of the С9 fraction of diesel fuel pyrolysis by products using n-(tert-butylperoxymethyl)-4-chloroaniline / Subtelnyi R. O. та ін. // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 73–79.
dc.identifier.citationenAPASubtelnyi, R. O., Stsira, V. O., Kichura, D. B., & Dzinyak, B. O. (2024). Suspension oligomerization of the С9 fraction of diesel fuel pyrolysis by products using n-(tert-butylperoxymethyl)-4-chloroaniline. Chemistry, Technology and Application of Substances, 7(2), 73-79. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOSubtelnyi R. O., Stsira V. O., Kichura D. B., Dzinyak B. O. (2024) Suspension oligomerization of the С9 fraction of diesel fuel pyrolysis by products using n-(tert-butylperoxymethyl)-4-chloroaniline. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 73-79.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.073
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124439
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Mildenberg, R., Zander, M., & Collin, G. (2008). Hydrocarbon resins. John Wiley & Sons.
dc.relation.references2. Zongyan, F. (2006). Application and Production of C9 Petroleum Resin. Petrochemical Industry Technology, 1.
dc.relation.references3. Zohuriaan–Mehr, M. J., & Omidian, H. (2000). Petroleum Resins: An Overview. Journal of Macromolecular Science, Part C: Polymer Reviews,40(1), 23–49. https://doi.org/10.1081/MC–100100577
dc.relation.references4. Rahmatpour, A., & Ghasemi Meymandi, M.(2021). Large–Scale Production of C9 Aromatic Hydrocarbon Resin from the Cracked-Petroleum-Derived C9 Fraction: Chemistry, Scalability, and Techno– economic Analysis. Organic Process Research & Development, 25(1), 120–135. https://doi.org/10.1021/acs.oprd.0c00474
dc.relation.references5. Dzinyak, B., & Melnyk, S. (2016). Initiated by organic peroxides cooligomerization of unsaturated hydrocarbons of C5 fraction-by-product of ethylene production. Chemistry and Chemical Technology, 10(2),173–178. https://doi.org/10.23939/chcht10.02.173
dc.relation.references6. Subtelnyy, R., Zhuravskyi, Y., & Dzinyak, B. (2023). Preparation of hydrocarbon resins by suspension oligomerisation of the С9 fraction of gasoline pyrolysis initiated by amino peroxides. Eastern-European Journal of Enterprise Technologies, 6(6(126)), 23–30. Scopus.https://doi.org/10.15587/1729–4061.2023.292527
dc.relation.references7. Subtelnyi, R. О., Kichura, D. B., & Dzinyak, B. О. (2022). C9 fraction oligomerization initiated by Nsubstituted aromatic aminoperoxides. Chemistry, Technology and Application of Substances, 5(2), 88–93.https://doi.org/10.23939/ctas2022.02.088
dc.relation.references8. Subtelnyy, R., Zhuravskyi, Y., Kichura, D., & Dzinyak, B. (2022). Oligomerization of C9 hydrocarbon fraction initiated by amino peroxides with cyclic substitute. Eastern-European Journal of Enterprise Technologies, 3(6–117), 23–31. Scopus. https://doi.org/10.15587/1729–4061.2022.259892
dc.relation.references9. Didoshak, R. O., & Starchevskyi, V. L. (2005). Zalezhnist vykhodu ta fizyko-khimichnykh pokaznykiv naftopolimernykh smol vid kontsetratsii initsiatora. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 99–102.
dc.relation.references10. Orobchuk, O. M., Subtelnyi, R. O., & Dziniak, B. O. (2014). Vyvchennia vplyvu dozuvannia initsiiatora na protses suspenziinoi koolihomeryzatsii vuheliovodnoi fraktsii. Eastern-European Journal of Enterprise Technologies,4(6(70)), Article 6(70). https://doi.org/10.15587/1729–4061.2014.26236
dc.relation.references11. Dzumedzei, M. V., Kucher, R. V., Turovskyi, A. A., & Koshovskyi, B. I. (1971). Doslidzhennia kinetyky termichnoho rozpadu azotumisnykh perekysnykh spoluk z tret-alkilnym radykalom. Ukraynskyi khymycheskyi zhurnal, 39, 1142–1145.
dc.relation.references12. Kuchar, E. J. (1964). Detection and determination of the alkenes. В The Alkenes (1964) (с. 271–333). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470771044.ch5
dc.relation.references13. Brooks, B. (2010). Suspension polymerization processes. Chemical Engineering & Technology, 33(11),1737–1744.
dc.relation.references14. Odian, G. (2004). Principles of polymerization.John Wiley & Sons.
dc.relation.references15. Bhattad, A. (2023). Review on viscosity measurement: Devices, methods and models. Journal of Thermal Analysis and Calorimetry, 148(14), 6527–6543.https://doi.org/10.1007/s10973–023–12214–0
dc.relation.references16. Ramli, H., Zainal, N. F. A., Hess, M., & Chan, C. H. (2022). Basic principle and good practices of rheology for polymers for teachers and beginners. Chemistry Teacher International, 4(4), 307–326.https://doi.org/10.1515/cti–2022–0010
dc.relation.references17. Ma, J., Huang, X., Bae, H., Zheng, Y., Liu, C., Zhao, M., & Yu, M. (2016). Liquid Viscosity Measurement Using a Vibrating Flexure Hinged Structure and a Fiber-Optic Sensor. IEEE Sensors Journal, 16(13),5249–5258. https://doi.org/10.1109/JSEN.2016.2562740
dc.relation.references18. Münstedt, H. (2021). Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers,13(7), Article 7. https://doi.org/10.3390/polym13071123
dc.relation.referencesen1. Mildenberg, R., Zander, M., & Collin, G. (2008). Hydrocarbon resins. John Wiley & Sons.
dc.relation.referencesen2. Zongyan, F. (2006). Application and Production of P.9 Petroleum Resin. Petrochemical Industry Technology, 1.
dc.relation.referencesen3. Zohuriaan–Mehr, M. J., & Omidian, H. (2000). Petroleum Resins: An Overview. Journal of Macromolecular Science, Part C: Polymer Reviews,40(1), 23–49. https://doi.org/10.1081/MC–100100577
dc.relation.referencesen4. Rahmatpour, A., & Ghasemi Meymandi, M.(2021). Large–Scale Production of P.9 Aromatic Hydrocarbon Resin from the Cracked-Petroleum-Derived P.9 Fraction: Chemistry, Scalability, and Techno– economic Analysis. Organic Process Research & Development, 25(1), 120–135. https://doi.org/10.1021/acs.oprd.0c00474
dc.relation.referencesen5. Dzinyak, B., & Melnyk, S. (2016). Initiated by organic peroxides cooligomerization of unsaturated hydrocarbons of P.5 fraction-by-product of ethylene production. Chemistry and Chemical Technology, 10(2),173–178. https://doi.org/10.23939/chcht10.02.173
dc.relation.referencesen6. Subtelnyy, R., Zhuravskyi, Y., & Dzinyak, B. (2023). Preparation of hydrocarbon resins by suspension oligomerisation of the P.9 fraction of gasoline pyrolysis initiated by amino peroxides. Eastern-European Journal of Enterprise Technologies, 6(6(126)), 23–30. Scopus.https://doi.org/10.15587/1729–4061.2023.292527
dc.relation.referencesen7. Subtelnyi, R. O., Kichura, D. B., & Dzinyak, B. O. (2022). P.9 fraction oligomerization initiated by Nsubstituted aromatic aminoperoxides. Chemistry, Technology and Application of Substances, 5(2), 88–93.https://doi.org/10.23939/ctas2022.02.088
dc.relation.referencesen8. Subtelnyy, R., Zhuravskyi, Y., Kichura, D., & Dzinyak, B. (2022). Oligomerization of P.9 hydrocarbon fraction initiated by amino peroxides with cyclic substitute. Eastern-European Journal of Enterprise Technologies, 3(6–117), 23–31. Scopus. https://doi.org/10.15587/1729–4061.2022.259892
dc.relation.referencesen9. Didoshak, R. O., & Starchevskyi, V. L. (2005). Zalezhnist vykhodu ta fizyko-khimichnykh pokaznykiv naftopolimernykh smol vid kontsetratsii initsiatora. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 99–102.
dc.relation.referencesen10. Orobchuk, O. M., Subtelnyi, R. O., & Dziniak, B. O. (2014). Vyvchennia vplyvu dozuvannia initsiiatora na protses suspenziinoi koolihomeryzatsii vuheliovodnoi fraktsii. Eastern-European Journal of Enterprise Technologies,4(6(70)), Article 6(70). https://doi.org/10.15587/1729–4061.2014.26236
dc.relation.referencesen11. Dzumedzei, M. V., Kucher, R. V., Turovskyi, A. A., & Koshovskyi, B. I. (1971). Doslidzhennia kinetyky termichnoho rozpadu azotumisnykh perekysnykh spoluk z tret-alkilnym radykalom. Ukraynskyi khymycheskyi zhurnal, 39, 1142–1145.
dc.relation.referencesen12. Kuchar, E. J. (1964). Detection and determination of the alkenes. V The Alkenes (1964) (P. 271–333). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470771044.ch5
dc.relation.referencesen13. Brooks, B. (2010). Suspension polymerization processes. Chemical Engineering & Technology, 33(11),1737–1744.
dc.relation.referencesen14. Odian, G. (2004). Principles of polymerization.John Wiley & Sons.
dc.relation.referencesen15. Bhattad, A. (2023). Review on viscosity measurement: Devices, methods and models. Journal of Thermal Analysis and Calorimetry, 148(14), 6527–6543.https://doi.org/10.1007/s10973–023–12214–0
dc.relation.referencesen16. Ramli, H., Zainal, N. F. A., Hess, M., & Chan, C. H. (2022). Basic principle and good practices of rheology for polymers for teachers and beginners. Chemistry Teacher International, 4(4), 307–326.https://doi.org/10.1515/cti–2022–0010
dc.relation.referencesen17. Ma, J., Huang, X., Bae, H., Zheng, Y., Liu, C., Zhao, M., & Yu, M. (2016). Liquid Viscosity Measurement Using a Vibrating Flexure Hinged Structure and a Fiber-Optic Sensor. IEEE Sensors Journal, 16(13),5249–5258. https://doi.org/10.1109/JSEN.2016.2562740
dc.relation.referencesen18. Münstedt, H. (2021). Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers,13(7), Article 7. https://doi.org/10.3390/polym13071123
dc.relation.urihttps://doi.org/10.1081/MC–100100577
dc.relation.urihttps://doi.org/10.1021/acs.oprd.0c00474
dc.relation.urihttps://doi.org/10.23939/chcht10.02.173
dc.relation.urihttps://doi.org/10.15587/1729–4061.2023.292527
dc.relation.urihttps://doi.org/10.23939/ctas2022.02.088
dc.relation.urihttps://doi.org/10.15587/1729–4061.2022.259892
dc.relation.urihttps://doi.org/10.15587/1729–4061.2014.26236
dc.relation.urihttps://doi.org/10.1002/9780470771044.ch5
dc.relation.urihttps://doi.org/10.1007/s10973–023–12214–0
dc.relation.urihttps://doi.org/10.1515/cti–2022–0010
dc.relation.urihttps://doi.org/10.1109/JSEN.2016.2562740
dc.relation.urihttps://doi.org/10.3390/polym13071123
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectолігомер
dc.subjectсмола
dc.subjectамінопероксид
dc.subjectолігомеризація
dc.subjectсуспензія
dc.subjectфракція С9
dc.subjectв’язкість
dc.subjectoligomer
dc.subjectresin
dc.subjectaminoperoxide
dc.subjectoligomerization
dc.subjectsuspension
dc.subjectC9 fraction
dc.subjectviscosity
dc.titleSuspension oligomerization of the С9 fraction of diesel fuel pyrolysis by products using n-(tert-butylperoxymethyl)-4-chloroaniline
dc.title.alternativeСуспензійна олігомеризація фракції С9 побічних продуктів піролізу дизельного палива з використанням n-(трет-бутилпероксиметил)-4-хлораніліну
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Subtelnyi_R_O-Suspension_oligomerization_73-79.pdf
Size:
349.02 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: