Preparation and research of gelatine hydrogel anti-bedsore materials properties

dc.citation.epage172
dc.citation.issue1
dc.citation.spage166
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМайкович, О. В.
dc.contributor.authorНосова, Н. Г.
dc.contributor.authorНадашкевич, З. Я.
dc.contributor.authorВарваренко, С. М.
dc.contributor.authorMaikovych, O. V.
dc.contributor.authorNosova, N. G.
dc.contributor.authorNadashkevych, Z. Ya.
dc.contributor.authorVarvarenko, S. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:49Z
dc.date.available2024-01-22T09:22:49Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractНаведено результати досліджень утворення полімерної матриці гідрогелю у результаті структурування желатину діоксирановими похідними поліоксіетиленгліколів, визначено оптимальні умови їх синтезу та визначено характеристики гідрогелю (ступінь набрякання у різних середовищах, механічні властивості за різних температур) залежно від типу діоксиранового похідного та співвідношення між форполімерами. Встановлено можливість введення низки лікарських препаратів до складу гідрогелів та показано, що вивільнення цих препаратів відбувається пролонговано.
dc.description.abstractThe formation of the hydrogel polymer matrix duringthe gelatin cross-linking with dioxirane derivatives of polyoxyethylene glycolswere studied.The optimal conditions for their synthesis were determined. The characteristics of the hydrogel (swelling in different media, mechanical properties at different temperatures) were obtained depending on the type of dioxirane derivative and prepolymer ratio. The possibility of introducing several drugs into hydrogels was established and the release of these drugs was found to be prolonged.
dc.format.extent166-172
dc.format.pages7
dc.identifier.citationPreparation and research of gelatine hydrogel anti-bedsore materials properties / O. V. Maikovych, N. G. Nosova, Z. Ya. Nadashkevych, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 166–172.
dc.identifier.citationenPreparation and research of gelatine hydrogel anti-bedsore materials properties / O. V. Maikovych, N. G. Nosova, Z. Ya. Nadashkevych, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 166–172.
dc.identifier.doidoi.org/10.23939/ctas2022.01.166
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60927
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P. (2021). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2020.1870034.
dc.relation.references2. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013.
dc.relation.references3. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172–1186. https://doi.org/10.2174/1381612825666190425190754.
dc.relation.references4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 3(1), 6. https://doi.org/10.3390/gels3010006.
dc.relation.references5. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A Review. Progress in Biomaterials, 7(1), 1–21. https://doi.org/10.1007/s40204-018-0083-4.
dc.relation.references6. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings – a review. BioMedicine, 5(4). https://doi.org/10.7603/s40681-015-0022-9.
dc.relation.references7. Brumberg, V., Astrelina, T., Malivanova, T., & Samoilov, A. (2021). Modern wound dressings: Hydrogel dressings. Biomedicines, 9(9), 1235. https://doi.org/10.3390/biomedicines9091235.
dc.relation.references8. Fahr, A., & Liu, X. (2007). Drug delivery strategies for poorly water-soluble drugs. Expert Opinion on Drug Delivery, 4(4), 403–416. https://doi.org/10.1517/17425247.4.4.403.
dc.relation.references9. Zagórska-Dziok, M., & Sobczak, M. (2020). Hydrogel-based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics, 12(5), 396. https://doi.org/10.3390/pharmaceutics12050396.
dc.relation.references10. Gu, D., O’Connor, A. J., G.H. Qiao, G., & Ladewig, K. (2016). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879–895. https://doi.org/10.1080/17425247.2017.1245290.
dc.relation.references11. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 20(11), 20397–20408. https://doi.org/10.3390/molecules201119705.
dc.relation.references12. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel dressings for the treatment of Burn wounds: An up-to-date overview. Materials, 13(12), 2853. https://doi.org/10.3390/ma13122853.
dc.relation.references13. Siggia, S., & Hanna, J. G. (1988). Quantitative Organic Analysis via functional groups. R.E. Krieger Pub. Co.
dc.relation.references14. Rezvanian, M., Ahmad, N., Mohd Amin, M. C., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin Ionic cross-linked hydrogel film for Wound Dressing Applications. International Journal of Biological Macromolecules, 97, 131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079.
dc.relation.references15. Zhang, L., Jeong, Y., Zheng, S., Kang, D., Suh, H., & Kim, I. (2013). Сrosslinked poly(ethylene glycol) hydrogels with degradable phosphamide linkers used as a drug carrier in cancer therapy. Macromolecular Bioscience, 14(3), 401–410. DOI: 10.1002/mabi.201300327.
dc.relation.references16. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Dron, І. А., Stasiuk, A. V., Samaryk, V. Y., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 45–54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54.
dc.relation.references17. Mujono, A., Evelyn, J., & Prasetyanto, E. A. (2020). Development of hybrid gelatine/alginate/PVA hydrogels for extended delivery of antibiotics. IOP Conference Series: Materials Science and Engineering, 858(1), 012033. https://doi.org/10.1088/1757-899x/858/1/012033.
dc.relation.references18. Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Dixon, B., & Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530–544. https://doi.org/10.1016/j.biotechadv.2017.05.006.
dc.relation.references19. Ndlovu, S. P., Ngece, K., Alven, S., & Aderibigbe, B. A. (2021). Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 13(17), 2959. https://doi.org/10.3390/polym13172959.
dc.relation.references20. Gorobeiko, M. B., Larin, O. S., & Taran, Y. V. (2012). Effektivnost Aktovegina pri perifericheskoy angiopatii razlichnoy stepeni u bolnyih saharnyim diabetom. International journal of endocrinology (Ukraine), (2.42), 70–73. https://doi.org/10.22141/2224-0721.0.2.42.2012.176858.
dc.relation.references21. V. I. Palamarchyk, S. I. Odnorog, N. N. Gvozdyak, A. M. Vilgash. (2014). Local treatment of venous ulcer in varicose veins disease on diabetes mellitus background. Surgery of Ukraine (Ukraine), (4), 89–92.
dc.relation.references22. Powers, J. G., Morton, L. M., & Phillips, T. J. (2013). Dressings for chronic wounds. Dermatologic Therapy, 26(3), 197–206. https://doi.org/10.1111/dth.12055.
dc.relation.referencesen1. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P. (2021). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2020.1870034.
dc.relation.referencesen2. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013.
dc.relation.referencesen3. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172–1186. https://doi.org/10.2174/1381612825666190425190754.
dc.relation.referencesen4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 3(1), 6. https://doi.org/10.3390/gels3010006.
dc.relation.referencesen5. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A Review. Progress in Biomaterials, 7(1), 1–21. https://doi.org/10.1007/s40204-018-0083-4.
dc.relation.referencesen6. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings – a review. BioMedicine, 5(4). https://doi.org/10.7603/s40681-015-0022-9.
dc.relation.referencesen7. Brumberg, V., Astrelina, T., Malivanova, T., & Samoilov, A. (2021). Modern wound dressings: Hydrogel dressings. Biomedicines, 9(9), 1235. https://doi.org/10.3390/biomedicines9091235.
dc.relation.referencesen8. Fahr, A., & Liu, X. (2007). Drug delivery strategies for poorly water-soluble drugs. Expert Opinion on Drug Delivery, 4(4), 403–416. https://doi.org/10.1517/17425247.4.4.403.
dc.relation.referencesen9. Zagórska-Dziok, M., & Sobczak, M. (2020). Hydrogel-based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics, 12(5), 396. https://doi.org/10.3390/pharmaceutics12050396.
dc.relation.referencesen10. Gu, D., O’Connor, A. J., G.H. Qiao, G., & Ladewig, K. (2016). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879–895. https://doi.org/10.1080/17425247.2017.1245290.
dc.relation.referencesen11. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 20(11), 20397–20408. https://doi.org/10.3390/molecules201119705.
dc.relation.referencesen12. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel dressings for the treatment of Burn wounds: An up-to-date overview. Materials, 13(12), 2853. https://doi.org/10.3390/ma13122853.
dc.relation.referencesen13. Siggia, S., & Hanna, J. G. (1988). Quantitative Organic Analysis via functional groups. R.E. Krieger Pub. Co.
dc.relation.referencesen14. Rezvanian, M., Ahmad, N., Mohd Amin, M. C., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin Ionic cross-linked hydrogel film for Wound Dressing Applications. International Journal of Biological Macromolecules, 97, 131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079.
dc.relation.referencesen15. Zhang, L., Jeong, Y., Zheng, S., Kang, D., Suh, H., & Kim, I. (2013). Srosslinked poly(ethylene glycol) hydrogels with degradable phosphamide linkers used as a drug carrier in cancer therapy. Macromolecular Bioscience, 14(3), 401–410. DOI: 10.1002/mabi.201300327.
dc.relation.referencesen16. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Dron, I. A., Stasiuk, A. V., Samaryk, V. Y., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 45–54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54.
dc.relation.referencesen17. Mujono, A., Evelyn, J., & Prasetyanto, E. A. (2020). Development of hybrid gelatine/alginate/PVA hydrogels for extended delivery of antibiotics. IOP Conference Series: Materials Science and Engineering, 858(1), 012033. https://doi.org/10.1088/1757-899x/858/1/012033.
dc.relation.referencesen18. Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Dixon, B., & Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530–544. https://doi.org/10.1016/j.biotechadv.2017.05.006.
dc.relation.referencesen19. Ndlovu, S. P., Ngece, K., Alven, S., & Aderibigbe, B. A. (2021). Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 13(17), 2959. https://doi.org/10.3390/polym13172959.
dc.relation.referencesen20. Gorobeiko, M. B., Larin, O. S., & Taran, Y. V. (2012). Effektivnost Aktovegina pri perifericheskoy angiopatii razlichnoy stepeni u bolnyih saharnyim diabetom. International journal of endocrinology (Ukraine), (2.42), 70–73. https://doi.org/10.22141/2224-0721.0.2.42.2012.176858.
dc.relation.referencesen21. V. I. Palamarchyk, S. I. Odnorog, N. N. Gvozdyak, A. M. Vilgash. (2014). Local treatment of venous ulcer in varicose veins disease on diabetes mellitus background. Surgery of Ukraine (Ukraine), (4), 89–92.
dc.relation.referencesen22. Powers, J. G., Morton, L. M., & Phillips, T. J. (2013). Dressings for chronic wounds. Dermatologic Therapy, 26(3), 197–206. https://doi.org/10.1111/dth.12055.
dc.relation.urihttps://doi.org/10.1080/10408398.2020.1870034
dc.relation.urihttps://doi.org/10.3390/jfb9010013
dc.relation.urihttps://doi.org/10.2174/1381612825666190425190754
dc.relation.urihttps://doi.org/10.3390/gels3010006
dc.relation.urihttps://doi.org/10.1007/s40204-018-0083-4
dc.relation.urihttps://doi.org/10.7603/s40681-015-0022-9
dc.relation.urihttps://doi.org/10.3390/biomedicines9091235
dc.relation.urihttps://doi.org/10.1517/17425247.4.4.403
dc.relation.urihttps://doi.org/10.3390/pharmaceutics12050396
dc.relation.urihttps://doi.org/10.1080/17425247.2017.1245290
dc.relation.urihttps://doi.org/10.3390/molecules201119705
dc.relation.urihttps://doi.org/10.3390/ma13122853
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2016.12.079
dc.relation.urihttps://doi.org/10.32434/0321-4095-2021-134-1-45-54
dc.relation.urihttps://doi.org/10.1088/1757-899x/858/1/012033
dc.relation.urihttps://doi.org/10.1016/j.biotechadv.2017.05.006
dc.relation.urihttps://doi.org/10.3390/polym13172959
dc.relation.urihttps://doi.org/10.22141/2224-0721.0.2.42.2012.176858
dc.relation.urihttps://doi.org/10.1111/dth.12055
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectжелатин
dc.subjectгідрогель
dc.subjectпролежні
dc.subjectгель-фракція
dc.subjectступінь набрякання
dc.subjectхронічні рани
dc.subjectgelatin
dc.subjecthydrogel
dc.subjectbedsore
dc.subjectgel fraction
dc.subjectswelling degree
dc.subjectchronic wounds
dc.titlePreparation and research of gelatine hydrogel anti-bedsore materials properties
dc.title.alternativeОтримання та дослідження властивостей желатинових гідрогелевих протипролежневих матеріалів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v5n1_Maikovych_O_V-Preparation_and_research_166-172.pdf
Size:
372.6 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v5n1_Maikovych_O_V-Preparation_and_research_166-172__COVER.png
Size:
464.01 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: