Preparation and research of gelatine hydrogel anti-bedsore materials properties
dc.citation.epage | 172 | |
dc.citation.issue | 1 | |
dc.citation.spage | 166 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Майкович, О. В. | |
dc.contributor.author | Носова, Н. Г. | |
dc.contributor.author | Надашкевич, З. Я. | |
dc.contributor.author | Варваренко, С. М. | |
dc.contributor.author | Maikovych, O. V. | |
dc.contributor.author | Nosova, N. G. | |
dc.contributor.author | Nadashkevych, Z. Ya. | |
dc.contributor.author | Varvarenko, S. M. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:49Z | |
dc.date.available | 2024-01-22T09:22:49Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Наведено результати досліджень утворення полімерної матриці гідрогелю у результаті структурування желатину діоксирановими похідними поліоксіетиленгліколів, визначено оптимальні умови їх синтезу та визначено характеристики гідрогелю (ступінь набрякання у різних середовищах, механічні властивості за різних температур) залежно від типу діоксиранового похідного та співвідношення між форполімерами. Встановлено можливість введення низки лікарських препаратів до складу гідрогелів та показано, що вивільнення цих препаратів відбувається пролонговано. | |
dc.description.abstract | The formation of the hydrogel polymer matrix duringthe gelatin cross-linking with dioxirane derivatives of polyoxyethylene glycolswere studied.The optimal conditions for their synthesis were determined. The characteristics of the hydrogel (swelling in different media, mechanical properties at different temperatures) were obtained depending on the type of dioxirane derivative and prepolymer ratio. The possibility of introducing several drugs into hydrogels was established and the release of these drugs was found to be prolonged. | |
dc.format.extent | 166-172 | |
dc.format.pages | 7 | |
dc.identifier.citation | Preparation and research of gelatine hydrogel anti-bedsore materials properties / O. V. Maikovych, N. G. Nosova, Z. Ya. Nadashkevych, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 166–172. | |
dc.identifier.citationen | Preparation and research of gelatine hydrogel anti-bedsore materials properties / O. V. Maikovych, N. G. Nosova, Z. Ya. Nadashkevych, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 166–172. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.166 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60927 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P. (2021). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2020.1870034. | |
dc.relation.references | 2. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013. | |
dc.relation.references | 3. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172–1186. https://doi.org/10.2174/1381612825666190425190754. | |
dc.relation.references | 4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 3(1), 6. https://doi.org/10.3390/gels3010006. | |
dc.relation.references | 5. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A Review. Progress in Biomaterials, 7(1), 1–21. https://doi.org/10.1007/s40204-018-0083-4. | |
dc.relation.references | 6. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings – a review. BioMedicine, 5(4). https://doi.org/10.7603/s40681-015-0022-9. | |
dc.relation.references | 7. Brumberg, V., Astrelina, T., Malivanova, T., & Samoilov, A. (2021). Modern wound dressings: Hydrogel dressings. Biomedicines, 9(9), 1235. https://doi.org/10.3390/biomedicines9091235. | |
dc.relation.references | 8. Fahr, A., & Liu, X. (2007). Drug delivery strategies for poorly water-soluble drugs. Expert Opinion on Drug Delivery, 4(4), 403–416. https://doi.org/10.1517/17425247.4.4.403. | |
dc.relation.references | 9. Zagórska-Dziok, M., & Sobczak, M. (2020). Hydrogel-based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics, 12(5), 396. https://doi.org/10.3390/pharmaceutics12050396. | |
dc.relation.references | 10. Gu, D., O’Connor, A. J., G.H. Qiao, G., & Ladewig, K. (2016). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879–895. https://doi.org/10.1080/17425247.2017.1245290. | |
dc.relation.references | 11. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 20(11), 20397–20408. https://doi.org/10.3390/molecules201119705. | |
dc.relation.references | 12. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel dressings for the treatment of Burn wounds: An up-to-date overview. Materials, 13(12), 2853. https://doi.org/10.3390/ma13122853. | |
dc.relation.references | 13. Siggia, S., & Hanna, J. G. (1988). Quantitative Organic Analysis via functional groups. R.E. Krieger Pub. Co. | |
dc.relation.references | 14. Rezvanian, M., Ahmad, N., Mohd Amin, M. C., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin Ionic cross-linked hydrogel film for Wound Dressing Applications. International Journal of Biological Macromolecules, 97, 131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079. | |
dc.relation.references | 15. Zhang, L., Jeong, Y., Zheng, S., Kang, D., Suh, H., & Kim, I. (2013). Сrosslinked poly(ethylene glycol) hydrogels with degradable phosphamide linkers used as a drug carrier in cancer therapy. Macromolecular Bioscience, 14(3), 401–410. DOI: 10.1002/mabi.201300327. | |
dc.relation.references | 16. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Dron, І. А., Stasiuk, A. V., Samaryk, V. Y., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 45–54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54. | |
dc.relation.references | 17. Mujono, A., Evelyn, J., & Prasetyanto, E. A. (2020). Development of hybrid gelatine/alginate/PVA hydrogels for extended delivery of antibiotics. IOP Conference Series: Materials Science and Engineering, 858(1), 012033. https://doi.org/10.1088/1757-899x/858/1/012033. | |
dc.relation.references | 18. Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Dixon, B., & Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530–544. https://doi.org/10.1016/j.biotechadv.2017.05.006. | |
dc.relation.references | 19. Ndlovu, S. P., Ngece, K., Alven, S., & Aderibigbe, B. A. (2021). Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 13(17), 2959. https://doi.org/10.3390/polym13172959. | |
dc.relation.references | 20. Gorobeiko, M. B., Larin, O. S., & Taran, Y. V. (2012). Effektivnost Aktovegina pri perifericheskoy angiopatii razlichnoy stepeni u bolnyih saharnyim diabetom. International journal of endocrinology (Ukraine), (2.42), 70–73. https://doi.org/10.22141/2224-0721.0.2.42.2012.176858. | |
dc.relation.references | 21. V. I. Palamarchyk, S. I. Odnorog, N. N. Gvozdyak, A. M. Vilgash. (2014). Local treatment of venous ulcer in varicose veins disease on diabetes mellitus background. Surgery of Ukraine (Ukraine), (4), 89–92. | |
dc.relation.references | 22. Powers, J. G., Morton, L. M., & Phillips, T. J. (2013). Dressings for chronic wounds. Dermatologic Therapy, 26(3), 197–206. https://doi.org/10.1111/dth.12055. | |
dc.relation.referencesen | 1. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P. (2021). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2020.1870034. | |
dc.relation.referencesen | 2. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013. | |
dc.relation.referencesen | 3. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172–1186. https://doi.org/10.2174/1381612825666190425190754. | |
dc.relation.referencesen | 4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 3(1), 6. https://doi.org/10.3390/gels3010006. | |
dc.relation.referencesen | 5. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A Review. Progress in Biomaterials, 7(1), 1–21. https://doi.org/10.1007/s40204-018-0083-4. | |
dc.relation.referencesen | 6. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings – a review. BioMedicine, 5(4). https://doi.org/10.7603/s40681-015-0022-9. | |
dc.relation.referencesen | 7. Brumberg, V., Astrelina, T., Malivanova, T., & Samoilov, A. (2021). Modern wound dressings: Hydrogel dressings. Biomedicines, 9(9), 1235. https://doi.org/10.3390/biomedicines9091235. | |
dc.relation.referencesen | 8. Fahr, A., & Liu, X. (2007). Drug delivery strategies for poorly water-soluble drugs. Expert Opinion on Drug Delivery, 4(4), 403–416. https://doi.org/10.1517/17425247.4.4.403. | |
dc.relation.referencesen | 9. Zagórska-Dziok, M., & Sobczak, M. (2020). Hydrogel-based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics, 12(5), 396. https://doi.org/10.3390/pharmaceutics12050396. | |
dc.relation.referencesen | 10. Gu, D., O’Connor, A. J., G.H. Qiao, G., & Ladewig, K. (2016). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879–895. https://doi.org/10.1080/17425247.2017.1245290. | |
dc.relation.referencesen | 11. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 20(11), 20397–20408. https://doi.org/10.3390/molecules201119705. | |
dc.relation.referencesen | 12. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel dressings for the treatment of Burn wounds: An up-to-date overview. Materials, 13(12), 2853. https://doi.org/10.3390/ma13122853. | |
dc.relation.referencesen | 13. Siggia, S., & Hanna, J. G. (1988). Quantitative Organic Analysis via functional groups. R.E. Krieger Pub. Co. | |
dc.relation.referencesen | 14. Rezvanian, M., Ahmad, N., Mohd Amin, M. C., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin Ionic cross-linked hydrogel film for Wound Dressing Applications. International Journal of Biological Macromolecules, 97, 131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079. | |
dc.relation.referencesen | 15. Zhang, L., Jeong, Y., Zheng, S., Kang, D., Suh, H., & Kim, I. (2013). Srosslinked poly(ethylene glycol) hydrogels with degradable phosphamide linkers used as a drug carrier in cancer therapy. Macromolecular Bioscience, 14(3), 401–410. DOI: 10.1002/mabi.201300327. | |
dc.relation.referencesen | 16. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Dron, I. A., Stasiuk, A. V., Samaryk, V. Y., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 45–54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54. | |
dc.relation.referencesen | 17. Mujono, A., Evelyn, J., & Prasetyanto, E. A. (2020). Development of hybrid gelatine/alginate/PVA hydrogels for extended delivery of antibiotics. IOP Conference Series: Materials Science and Engineering, 858(1), 012033. https://doi.org/10.1088/1757-899x/858/1/012033. | |
dc.relation.referencesen | 18. Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Dixon, B., & Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530–544. https://doi.org/10.1016/j.biotechadv.2017.05.006. | |
dc.relation.referencesen | 19. Ndlovu, S. P., Ngece, K., Alven, S., & Aderibigbe, B. A. (2021). Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 13(17), 2959. https://doi.org/10.3390/polym13172959. | |
dc.relation.referencesen | 20. Gorobeiko, M. B., Larin, O. S., & Taran, Y. V. (2012). Effektivnost Aktovegina pri perifericheskoy angiopatii razlichnoy stepeni u bolnyih saharnyim diabetom. International journal of endocrinology (Ukraine), (2.42), 70–73. https://doi.org/10.22141/2224-0721.0.2.42.2012.176858. | |
dc.relation.referencesen | 21. V. I. Palamarchyk, S. I. Odnorog, N. N. Gvozdyak, A. M. Vilgash. (2014). Local treatment of venous ulcer in varicose veins disease on diabetes mellitus background. Surgery of Ukraine (Ukraine), (4), 89–92. | |
dc.relation.referencesen | 22. Powers, J. G., Morton, L. M., & Phillips, T. J. (2013). Dressings for chronic wounds. Dermatologic Therapy, 26(3), 197–206. https://doi.org/10.1111/dth.12055. | |
dc.relation.uri | https://doi.org/10.1080/10408398.2020.1870034 | |
dc.relation.uri | https://doi.org/10.3390/jfb9010013 | |
dc.relation.uri | https://doi.org/10.2174/1381612825666190425190754 | |
dc.relation.uri | https://doi.org/10.3390/gels3010006 | |
dc.relation.uri | https://doi.org/10.1007/s40204-018-0083-4 | |
dc.relation.uri | https://doi.org/10.7603/s40681-015-0022-9 | |
dc.relation.uri | https://doi.org/10.3390/biomedicines9091235 | |
dc.relation.uri | https://doi.org/10.1517/17425247.4.4.403 | |
dc.relation.uri | https://doi.org/10.3390/pharmaceutics12050396 | |
dc.relation.uri | https://doi.org/10.1080/17425247.2017.1245290 | |
dc.relation.uri | https://doi.org/10.3390/molecules201119705 | |
dc.relation.uri | https://doi.org/10.3390/ma13122853 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2016.12.079 | |
dc.relation.uri | https://doi.org/10.32434/0321-4095-2021-134-1-45-54 | |
dc.relation.uri | https://doi.org/10.1088/1757-899x/858/1/012033 | |
dc.relation.uri | https://doi.org/10.1016/j.biotechadv.2017.05.006 | |
dc.relation.uri | https://doi.org/10.3390/polym13172959 | |
dc.relation.uri | https://doi.org/10.22141/2224-0721.0.2.42.2012.176858 | |
dc.relation.uri | https://doi.org/10.1111/dth.12055 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | желатин | |
dc.subject | гідрогель | |
dc.subject | пролежні | |
dc.subject | гель-фракція | |
dc.subject | ступінь набрякання | |
dc.subject | хронічні рани | |
dc.subject | gelatin | |
dc.subject | hydrogel | |
dc.subject | bedsore | |
dc.subject | gel fraction | |
dc.subject | swelling degree | |
dc.subject | chronic wounds | |
dc.title | Preparation and research of gelatine hydrogel anti-bedsore materials properties | |
dc.title.alternative | Отримання та дослідження властивостей желатинових гідрогелевих протипролежневих матеріалів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1