Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review

dc.citation.journalTitleVoprosy Khimii i Khimicheskoi Tekhnologii
dc.contributor.affiliationНаціональний університет "Львівська політехніка"uk_UA
dc.contributor.authorSukhatskiy, Yurii Viktorovych
dc.contributor.authorСухацький, Юрій Вікторович
dc.contributor.authorZnak, Zenovii Orestovych
dc.contributor.authorЗнак, Зеновій Орестович
dc.contributor.authorZin, Olha Ivanivna
dc.contributor.authorЗінь, Ольга Іванівна
dc.coverage.countryUAuk_UA
dc.coverage.placenameДніпроuk_UA
dc.date.accessioned2021-02-03T08:04:37Z
dc.date.available2021-02-03T08:04:37Z
dc.date.issued2020
dc.description.abstractThe review provides a systematic understanding of the mechanism of the sonochemical degradation of phenol. It was shown that the main contribution to the sonochemical degradation of phenol, a hydrophilic non-volatile wastewater component, is related to hydroxylation on the boundary of the «cavitation bubble–water contaminant solution». Depending on the method of generating hydroxyl radicals, all wastewater treatment methods for phenol removal based on advanced oxidation processes are classified into the following categories: chemical (acoustic and hydrodynamic cavitation, use of oxidants, Fenton process, and Fenton-like processes), photochemical (photolysis and photocatalysis), electrochemical and combined techniques. The essence of these methods is revealed and their main advantages and disadvantages are reviewed. It is shown that the efficiency of combined methods of phenol degradation that are based on the use of cavitation (acoustic or hydrodynamic) depends on the power of ultrasonic emitters, the frequency of ultrasonic vibrations, the magnitude of the pressure at the inlet of the hydrodynamic cavitator, physicochemical properties of media (temperature and pH), initial phenol concentration in aqueous medium, the design features of the cavitation generators, the presence of water-soluble gases or solid particles that exhibit catalytic properties, and the consumption of oxidizing reagents. Literature data showed that the most cost-effective method involving the use of ultrasonic cavitation is a combination «ultrasonic cavitation+photolysis+ozonation». The choice of a particular method for the degradation of phenol is determined by its content in wastewaters and their volume, the required degree of degradation, the duration of the purification process (the rate of degradation of the phenol), and economic indicators.uk_UA
dc.description.abstractВ огляді систематизовано теоретичні уявлення про механізм сонохімічної деградації фенолу. Зазначено, що основний внесок у сонохімічну деградацію фенолу, як гідрофільного нелеткого компонента стічних вод, належить гідроксилюванню на межі "кавітаційна бульбашка-водний розчин забруднювача". Залежно від способу генерування гідроксильних радикалів всі методи очищення стічних вод від фенолу, засновані на передових процесах окислення, класифіковано на хімічні (акустична та гідродинамічна кавітація, використання реаґентів-окисників, процес Фентона та Фентон-подібні процеси), фотохімічні (фотоліз, фотокаталіз), електрохімічні та комбіновані. Розкрито сутність цих методів, описано їх основні переваги та недоліки. Показано, що ефективність комбінованих методів деградації фенолу, що базуються на використанні кавітації (акустичної або гідродинамічної), залежить від потужності ультразвукових випромінювачів, частоти ультразвуку, величини тиску на вході у гідродинамічний кавітатор, фізико-хімічних властивостей середовищ (температури, pH), початкової концентрації фенолу у водному середовищі, конструктивних особливостей генераторів кавітації, наявності розчинених у воді газів або твердих частинок, які виявляють каталітичні властивості, витрати реаґентів-окисників. На основі порівняльного оцінювання витрат на очищення феноловмісних стічних вод виявлено, що найбільш економічно вигідним методом, який базується на використанні ультразвукової кавітації, є комбінація "ультразвукова кавітація+фотоліз+озонування". Встановлено, що застосування того чи іншого методу для деградації фенолу буде зумовлено його вмістом у стоках, об'ємом стоків, необхідним ступенем деградації, тривалістю процесу очищення, що визначається швидкістю деградації фенолу, та економічними показниками.uk_UA
dc.description.sponsorshipThe work was supported by the Ministry of Education and Science of Ukraine within the framework of the joint Ukrainian-Indian research project «Hydrodynamic cavitation based intensified and low cost technology for industrial wastewater treatment containing toxic organic compounds and solid particles».uk_UA
dc.format.extent16-30
dc.identifier.citationSukhatskiy Yu. V. Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review / Yu. V. Sukhatskiy, Z. O. Znak, O. I. Zin // Voprosy Khimii i Khimicheskoi Tekhnologii. – 2020. – No. 4 (131). – P. 16–30. – Bibliography: 68 titles.uk_UA
dc.identifier.citationenSukhatskiy Yu.V. Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review / Yu.V. Sukhatskiy, Z.O. Znak, O.I. Zin // Voprosy Khimii i Khimicheskoi Tekhnologii. – 2020. – No. 4 (131). – P. 16-30.uk_UA
dc.identifier.doi10.32434/0321-4095-2020-131-4-16-30
dc.identifier.issn0321-4095
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56114
dc.language.isoenuk_UA
dc.publisherДВНЗ "Український державний хіміко-технологічний університет"uk_UA
dc.relation.references1. Kidak R., Ince N.H. Effects of operating parameters on sonochemical decomposition of phenol // J. Hazard. Mater. – 2006. – Vol. 137. – No. 3. – P. 1453-1457.uk_UA
dc.relation.references2. Effect of coal ash on sonochemical degradation of phenol in water / Nakui H., Okitsu K., Maeda Y., Nishimura R. // Ultrason. Sonochem. – 2007. – Vol. 14. – No. 2. – P. 191-196.uk_UA
dc.relation.references3. Kidak R., Ince N.H. Ultrasonic destruction of phenol and substituted phenols: a review of current research // Ultrason. Sonochem. – 2006. – Vol. 13. – No. 3. – P. 195-199.uk_UA
dc.relation.references4. Ultrasound-assisted adsorption of phenol from aqueous solution by using spent black tea leaves / Ali A., Bilal M., Khan R., Farooq R., Siddique M. // Environ. Sci. Pollut. Res. – 2018. – Vol. 25. – No. 23. – P. 22920-22930.uk_UA
dc.relation.references5. Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals / Chand R., Ince N.H., Gogate P.R., Bremner D.H. // Sep. Purif. Technol. – 2009. – Vol. 67. – No. 1. – P. 103-109.uk_UA
dc.relation.references6. TiO2/nanoclay nanocomposite for phenol degradation in sonophotocatalytic reactor / Ghodke S., Sonawane S., Gaikawad R., Mohite K.C. // Can. J. Chem. Eng. – 2012. – Vol. 90. – No. 5. – P. 1153-1159.uk_UA
dc.relation.references7. Singh V.R., Bagal M.V., Mota R.P. Phenolic wastewater treatment: a review. International Journal of Advance Engineering and Research Development, 2018, vol. 5, no. 5, article no. 15994.uk_UA
dc.relation.references8. Karamah E.F., Tjahjadi L., Bismo S., Purwanto W.W., Degradation of phenol by combination of ozonation and cavitation. Proceeding of the 12th International conference on QiR (Quality in Research). Indonesia, Bali, 2011, pp. 119-126.uk_UA
dc.relation.references9. Bapat P.S., Gogate P.R., Pandit A.B. Theoretical analysis of sonochemical degradation of phenol and its chloro-derivatives. Ultrasonics Sonochemistry, 2008, vol. 15, pp. 564-570.uk_UA
dc.relation.references10. Bi Y.-G., Zheng Y.-H., Zhou S.-Q., Study on the process of degradation of phenolic compounds water by slot ultrasonic. E3S Web of Conferences: 4th International conference on advances in energy and environment research (ICAEER), 2019, vol. 118, article no. 03050.uk_UA
dc.relation.references11. Saksono N., Seratri R.T., Muthia R., Bismo S. Phenol degradation in wastewater with a contact glow discharge electrolysis reactor using a sodium sulfate. International Journal of Technology, 2015, vol. 6, no. 7, pp. 1153-1163.uk_UA
dc.relation.references12. Klymenko I., Yelatontsev D., Ivanchenko A., Dupenko O., Voloshyn M. Developing of effective treatment technology of the phenolic wastewater. Eastern-European Journal of Enterprise Technologies, 2016, vol. 3, no. 10(81), pp. 29-34.uk_UA
dc.relation.references13. Gogate P.R. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrasonics Sonochemistry, 2008, vol. 15, pp. 1-15.uk_UA
dc.relation.references14. Kidak R., Ince N.H. Catalysis of advanced oxidation reactions by ultrasound: a case study with phenol. Journal of Hazardous Materials, 2007, vol. 146, pp. 630-635.uk_UA
dc.relation.references15. Lu Y., Liu Y., Xia B., Zuo W. Phenol oxidation by combined cavitation water jet and hydrogen peroxide. Chinese Journal of Chemical Engineering, 2012, vol. 20, pp. 760-767.uk_UA
dc.relation.references16. Mahamuni N.N., Pandit A.B. Effect of additives on ultrasonic degradation of phenol. Ultrasonics Sonochemistry, 2006, vol. 13, pp. 165-174.uk_UA
dc.relation.references17. Sivasankar T., Moholkar V.S. Mechanistic features of the sonochemical degradation of organic pollutants. AIChE Journal, 2008, vol. 54, pp. 2206-2219.uk_UA
dc.relation.references18. Sivasankar T., Moholkar V.S. Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics. Ultrasonics Sonochemistry, 2009, vol. 16, pp. 769-781.uk_UA
dc.relation.references19. Sivasankar T., Moholkar V.S. Mechanistic approach to intensification of sonochemical degradation of phenol. Chemical Engineering Journal, 2009, vol. 149, pp. 57-69.uk_UA
dc.relation.references20. Chiha M., Merouani S., Hamdaoui O., Baup S., Gondrexon N., Petrier C. Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics. Ultrasonics Sonochemistry, 2010, vol. 17, pp. 773-782.uk_UA
dc.relation.references21. Serpone N., Terzian R., Colarusso P., Minero C., Pelizzetti E., Hidaka H. Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Research on Chemical Intermediates, 1993, vol. 18, pp. 183-202.uk_UA
dc.relation.references22. Petrier C., Francony A. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonics Sonochemistry, 1997, vol. 4, pp. 295-300.uk_UA
dc.relation.references23. Lesko T., Colussi A.J., Hoffmann M.R. Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology, 2006, vol. 40, pp. 6818-6823.uk_UA
dc.relation.references24. Okouchi S., Nojima O., Arai T. Cavitation-induced degradation of phenol by ultrasound. Water Science and Technology, 1992, vol. 26, pp. 2053-2056.uk_UA
dc.relation.references25. Petrier C., Francony A. Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment. Water Science and Technology, 1997, vol. 35, pp. 175-180.uk_UA
dc.relation.references26. Znak Z.O., Sukhatskiy Yu.V., Mnykh R.V., Tkach Z.S. Termokhimichnyi analiz energetyky protsessu sonolizu vody u kavitatsiinykh polyakh [Thermochemical analysis of energetic in the process of water sonolysis in cavitation fields]. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, no. 3, pp. 64-69. (in Ukrainian).uk_UA
dc.relation.references27. Merouani S., Hamdaoui O., Rezgui Y., Guemini M. Mechanism of the sonochemical production of hydrogen. International Journal of Hydrogen Energy, 2015, vol. 40, pp. 4056- 4064.uk_UA
dc.relation.references28. Znak Z.O., Sukhatskiy Yu.V., Zin O.I., Khomyak S.V., Mnykh R.V., Lysenko A.V. Rozklad benzolu v kavitatsiinykh polyakh [The decomposition of the benzene in cavitation fields]. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, no. 1, pp. 72-77. (in Ukrainian).uk_UA
dc.relation.references29. Znak Z.O., Sukhatskiy Yu.V., Zin O.I., Vyrsta K.R. Intensyfikatsiya kavitatsiinogo rozkladu benzenu [The intensification of the cavitation decomposition of benzene]. Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, no. 4, pp. 55-61. (in Ukrainian).uk_UA
dc.relation.references30. Gogate P.R., Pandit A.B. Sonophotocatalytic reactors for wastewater treatment: a critical review. AIChE Journal, 2004, vol. 50, pp. 1051-1079.uk_UA
dc.relation.references31. Kim K., Cho E., Thokchom B., Cui M., Jang M., Khim J. Synergistic sonoelectrochemical removal of substituted phenols: implications of ultrasonic parameters and physicochemical properties. Ultrasonics Sonochemistry, 2015, vol. 24, pp. 172-177.uk_UA
dc.relation.references32. Timofeyeva S.S., Batoyeva A.A. Stochnye vody predpriyatii po dobyche i pererabotke rudnogo zolota i kombinirovannye tekhnologii ikh obezvrezhivaniya [Wastewater of enterprises for the extraction and processing of ore gold and combined technologies for their disposal]. Vestnik IrGTU, 2013, no. 11 (82), pp. 132-142. (in Russian).uk_UA
dc.relation.references33. Deng J. Study of porous plate hydrodynamic cavitation device for p-nitrophenol. Advanced Materials Research, 2014, vol. 1015, pp. 385-388.uk_UA
dc.relation.references34. Marwan M. Kinetics of phenol degradation in aqueous solution oxidized under low frequency ultrasonic irradiation. Jurnal Rekayasa Kimia & Lingkungan, 2014, vol. 10, no. 1, pp. 34-39.uk_UA
dc.relation.references35. Her N.-G., Park J.-S., Oh J., Yoon Y. New design approaches for ultrasonic reactors: degradation of naphthalene and phenol in water. Water, Air, & Soil Pollution, 2011, vol. 220, pp. 173-180.uk_UA
dc.relation.references36. Lu G., Zhao L., Zhu M., Deng C., Liu H., Ma J., Li Y. Effect of cavitation hydrodynamic parameters on bisphenol A removal. Environmental Engineering Science, 2019, vol. 36, no. 8, pp. 873-882.uk_UA
dc.relation.references37. Wu C.D., Zhang Z.L., Wu Y., Wang L., Chen L.J. Effects of operating parameters and additives on degradation of phenol in water by the combination of H2O2 and hydrodynamic cavitation. Desalination and Water Treatment, 2015, vol. 53, pp. 462-468.uk_UA
dc.relation.references38. Znak Z., Sukhatskiy Yu. The Brandon method in modelling the cavitation processing of aqueous media. EasternEuropean Journal of Enterprise Technologies, 2016, vol. 3, no. 8 (81), pp. 37-42.uk_UA
dc.relation.references39. Yavors’kyi V.T., Znak Z.O., Sukhats’kyi Yu.V., Mnykh R.V. Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Materials Science, 2017, vol. 52, pp. 595-600.uk_UA
dc.relation.references40. Yavorskiy V., Sukhatskiy Y., Znak Z., Mnykh R. Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chemistry & Chemical Technology, 2016, vol. 10, pp. 507-513.uk_UA
dc.relation.references41. Gogate P.R., Pandit A.B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 2004, vol. 8, pp. 501-551.uk_UA
dc.relation.references42. Sivasankar T., Moholkar V.S. Physical insight into the sonochemical degradation of 2,4-dichlorophenol. Environmental Technology, 2010, vol. 31, pp. 1483-1494.uk_UA
dc.relation.references43. Drijvers D., van Langenhove H., Beckers M. Decomposition of phenol and trichloroethylene by the ultrasound/ H2O2/CuO process. Water Research, 1999, vol. 33, pp. 1187-1194.uk_UA
dc.relation.references44. Wu J., Jia R., Liu C., Wang H. Study of degradation of phenol in waste water sample via advanced oxidation technology. Proceedings of the 2015 International Forum on Energy, Environment Science and Materials (IFEESM 2015). 2015, pp. 584-587.uk_UA
dc.relation.references45. Gagol M., Przyjazny A., Boczkaj G. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions. Ultrasonics Sonochemistry, 2018, vol. 45, pp. 257-266.uk_UA
dc.relation.references46. Lu X., Zhao J., Wang Q., Wang D., Xu H., Ma J., Qiu W., Hu T. Sonolytic degradation of bisphenol S: effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity. Water Research, 2019, vol. 165, article no. 114969.uk_UA
dc.relation.references47. Gagol M., Przyjazny A., Boczkaj G. Wastewater treatment by means of advanced oxidation processes based on cavitation – a review. Chemical Engineering Journal, 2018, vol. 338, pp. 599-627.uk_UA
dc.relation.references48. Chakma S., Moholkar V.S. Intensification of wastewater treatment using sono-hybrid processes: an overview of mechanistic synergism. Indian Chemical Engineer, 2015, vol. 57, pp. 359-381.uk_UA
dc.relation.references49. ElShafei G.M.S., Yehia F.Z., Eshaq Gh., ElMetwally A.E. Enhanced degradation of nonylphenol at neutral pH by ultrasonic assisted-heterogeneous Fenton using nano zero valent metals. Separation and Purification Technology, 2017, vol. 178, pp. 122-129.uk_UA
dc.relation.references50. Li X., Zhang Y., Xie Y., Zeng Y., Li P., Xie T., Wang Y. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized schwertmannite catalyst. Journal of Hazardous Materials, 2018, vol. 344, pp. 689-697.uk_UA
dc.relation.references51. Molina R., Martinez F., Melero J.A., Bremner D.H., Chakinala A.G. Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Applied Catalysis B: Environmental, 2006, vol. 66, pp. 198-207.uk_UA
dc.relation.references52. Segura Y., Molina R., Martinez F., Melero J.A. Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrasonics Sonochemistry, 2009, vol. 16, pp. 417-424.uk_UA
dc.relation.references53. Zhou T., Lim T.T., Lu X., Li Y., Wong F.S. Simultaneous degradation of 4CP and EDTA in a heterogeneous ultrasound/Fenton like system at ambient circumstance. Separation and Purification Technology, 2009, vol. 68, pp. 367-374.uk_UA
dc.relation.references54. Lim M., Son Y., Khim J. The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A. Ultrasonics Sonochemistry, 2014, vol. 21, pp. 1976-1981.uk_UA
dc.relation.references55. Dutilleul H., Partaloglu A., da Costa P., Galvez M.E. Shock-induced cavitation as a way of accelerating phenol oxidation in aqueous media. Chemical Engineering and Processing: Process Intensification, 2017, vol. 112, pp. 47-55.uk_UA
dc.relation.references56. Thanekar P., Gogate P. Application of hydrodynamic cavitation reactors for treatment of wastewater containing organic pollutants: intensification using hybrid approaches. Fluids, 2018, vol. 3, article no. 98.uk_UA
dc.relation.references57. Tijani J.O., Fatoba O.O., Madzivire G., Petrik L.F. A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water, Air, & Soil Pollution, 2014, vol. 225, article no. 2102.uk_UA
dc.relation.references58. Wu Z., Franke M., Ondruschka B., Zhang Y., Ren Y., Braeutigam P., Wang W. Enhanced effect of suction-cavitation on the ozonation of phenol. Journal of Hazardous Materials, 2011, vol. 190, pp. 375-380.uk_UA
dc.relation.references59. Chakinala A.G., Bremner D.H., Gogate P.R., Namkung K.C., Burgess A.E. Multivariate analysis of phenol mineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing. Applied Catalysis B: Environmental, 2008, vol. 78, pp. 11-18.uk_UA
dc.relation.references60. Aseev D.G., Sizykh M.R., Batoeva A.A. Oxidative degradation of phenols in sono-Fenton-like systems upon highfrequency ultrasound irradiation. Russian Journal of Physical Chemistry A, 2017, vol. 91, pp. 2331-2336.uk_UA
dc.relation.references61. Khokhawala I.M., Gogate P.R. Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrasonics Sonochemistry, 2010, vol. 17, pp. 833-838.uk_UA
dc.relation.references62. Joseph C.G., Puma G.L., Bono A., Krishnaiah D. Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 2009, vol. 16, pp. 583-589.uk_UA
dc.relation.references63. Mahvi A.H. Application of ultrasonic technology for water and wastewater treatment. Iranian Journal of Public Health, 2009, vol. 38, no. 2, pp. 1-17.uk_UA
dc.relation.references64. Mahamuni N.N., Adewuyi Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 2010, vol. 17, pp. 990-1003.uk_UA
dc.relation.references65. Papoutsakis S., Miralles-Cuevas S., Gondrexon N., Baup S., Malato S., Pulgarin C. Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach. Ultrasonics Sonochemistry, 2015, vol. 22, pp. 527-534.uk_UA
dc.relation.references66. Chen Y.C., Smirniotis P. Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Industrial & Engineering Chemistry Research, 2002, vol. 41, pp. 5958-5965.uk_UA
dc.relation.references67. Trabelsi F., Ait-Lyazidi H., Ratsimba B., Wilhelm A.M., Delmas H., Fabre P.L., Berlan J. Oxidation of phenol in wastewater by sonoelectrochemistry. Chemical Engineering Science, 1996, vol. 51, pp. 1857-1865.uk_UA
dc.relation.references68. Entezari M.H., Petrier C. A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture. Ultrasonics Sonochemistry, 2005, vol. 12, pp. 283-288.uk_UA
dc.rights.holder© Yu.V. Sukhatskiy, Z.O. Znak, O.I. Zinuk_UA
dc.subjectcavitationuk_UA
dc.subjectкавітаціяuk_UA
dc.subjectphenoluk_UA
dc.subjectфенолuk_UA
dc.subjecthydroxyl radicalsuk_UA
dc.subjectгідроксильні радикалиuk_UA
dc.subjectultrasounduk_UA
dc.subjectультразвукuk_UA
dc.subjectFenton processuk_UA
dc.subjectпроцес Фентонаuk_UA
dc.subjectphotolysisuk_UA
dc.subjectфотолізuk_UA
dc.subjectphotocatalysisuk_UA
dc.subjectфотокаталізuk_UA
dc.subject.udc620.193.16:628.316.12:547.562.1uk_UA
dc.titleCavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a reviewuk_UA
dc.title.alternativeКавітація та її комбінації з іншими передовими процесами окислення для очищення стічних вод від фенолу: оглядuk_UA
dc.typeArticleuk_UA

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sukhatskiy.pdf
Size:
287.92 KB
Format:
Adobe Portable Document Format
Description:
Стаття
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Item-specific license agreed upon to submission
Description: