Impact of Oil Contamination and Humates on the Growth of Poaceae

dc.citation.epage70
dc.citation.issue2
dc.citation.spage62
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorDzhura, Nataliia
dc.contributor.authorBoretska, Iryna
dc.contributor.authorPodan, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T08:58:16Z
dc.date.available2023-05-04T08:58:16Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractThe article examines the impact of oil contamination and humates (Humifield Forte and Fulvital Plus) on the growth characteristics of Poaceae, such as corn (Zea mays L.) of Dostatok 300 MV hybrid, spring barley of the Karat variety and spring wheat of the Diana variety. Oil contamination has proved to inhibit plant growth and affect a decrease in the amount of photosynthetic pigments in the leaves, which can be explained by oil toxicity and the acquired hydrophobicity of soil. Soaking seeds in humate solution proved the effectiveness of their use for corn (Zea mays L.) of Dostatok 300 MV hybrid and spring barley of the Karat variety: the plants developed well and accumulated biomass actively. The use of humates for spring wheat of the Diana variety did not produce the desired effect: growth characteristics were lower, and the studied plants were weaker. An increase in the number of photosynthetic pigments, especially carotenoids, in the leaves of Poaceae plants indicates the feasibility of using humates to increase the stress resistance of plants in the early stages of growth and development in conditions of oil contamination of soil. A stimulating effect of the combination of oil contamination and Fulvital Plus on the growth of Poaceae was proved. Fulvital Plus is a growth stimulator and deficiency corrector of plant nutrition elements. The results obtained from the research prove the effectiveness of using humates for plants and can be used to increase the stress resistance and yield capacity of Poaceae in man-made conditions and to develop phytoremediation technologies for restoring oil-contaminated areas.
dc.format.extent62-70
dc.format.pages9
dc.identifier.citationDzhura N. Impact of Oil Contamination and Humates on the Growth of Poaceae / Nataliia Dzhura, Iryna Boretska, Iryna Podan // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 2. — P. 62–70.
dc.identifier.citationenDzhura N. Impact of Oil Contamination and Humates on the Growth of Poaceae / Nataliia Dzhura, Iryna Boretska, Iryna Podan // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 2. — P. 62–70.
dc.identifier.doidoi.org/10.23939/ep2022.02.062
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59023
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (7), 2022
dc.relation.referencesBanks, M. K., & Schultz, K. E. (2005). Comparison of plants
dc.relation.referencesfor germination toxicity tests in petroleum-contaminated
dc.relation.referencessoils. Water, Air, and Soil Pollution, 167 (1-4), 211–219.
dc.relation.referencesdoi: https://doi.org/10.1007/s11270-005-8553-4
dc.relation.referencesDanalatos, N., Archontoulis, S., & Mitsios, I. (2007). Potential
dc.relation.referencesgrowth and biomass productivity of miscanthus×giganteus
dc.relation.referencesas affected by plant density and N-fertilization in Central
dc.relation.referencesGreece. Biomass and Bioenergy, 31(2-3), 145–152. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.biombioe.2006.07.004
dc.relation.referencesDzhura, N. (2011). Perspektyvy fitoremediatsii naftozabrudnenykh
dc.relation.referencesgruntiv roslynamy Faba bona Medic. (Vicia faba L.)
dc.relation.references[Prospects for phytoremediation of oil-contaminated soils
dc.relation.referencesby Faba bona Medic plants. (Vicia faba L.)]. Visnyk
dc.relation.referencesLvivskoho Universytetu. Seriia Biolohichna, (57), 117–124.
dc.relation.referencesRetrieved from http://prima.lnu.edu.ua/faculty/biologh/wis/57/6/15/15.pdf
dc.relation.referencesDzhura, N., & Podan, I. (2017). Ekolohichni naslidky
dc.relation.referencesdovhotryvaloho naftovydobutku na Starosambirskomu
dc.relation.referencesrodovyshchi [Ecological consequences of extended oil
dc.relation.referencesproduction at Staryi Sambir petroleum deposit]. Visnyk
dc.relation.referencesLvivskoho Universytetu. Seriia Biolohichna, 76, 120–127.
dc.relation.referencesRetrieved from http://prima.lnu.edu.ua/faculty/biologh/wis/76/4/15/15.pdf
dc.relation.referencesGorova, A., Pavlychenko, A., Kulyna, S. and Shkremetko, O.,
dc.relation.references(2012). Ecological problems of post-industrial mining
dc.relation.referencesareas. Geomechanical Processes During Underground
dc.relation.referencesMining, 35‒40. doi: https://doi.org/10.1201/b13157
dc.relation.referencesGupta, V. K., Jain, P. K., Gaur, R. K., Lowry, M., Jaroli, D. P.,
dc.relation.references& Chauhan, U. K. (2011). Bioremediation of petroleum oil
dc.relation.referencescontaminated soil and water. Research Journal of
dc.relation.referencesEnvironmental Toxicology, 5(1), 1–26. doi: https://doi.org/10.3923/rjet.2011.1.26
dc.relation.referencesHorova, A., Pavlychenko, A., & Vysochyn, L. (2015).
dc.relation.referencesVykorystannia huminovykh rechovyn dlia vidnovlennia
dc.relation.referencesgruntiv u hirnychodobuvnykh rehionakh [Use of humic
dc.relation.referencessubstances for soil restoration in mining regions]. II
dc.relation.referencesInternational Scientific and Practical Conference
dc.relation.referencesRestoration of Biotic Potential of Agroecosystems (pp. 50–51).
dc.relation.referencesDnipropetrovsk; Arbuz.
dc.relation.referencesKim, S., Da, K., &Mei, C. (2012). An efficient system for highquality
dc.relation.referenceslarge-scale micropropagation of miscanthus × giganteus
dc.relation.referencesplants. In Vitro Cellular & Developmental Biology - Plant, 48(6), 613–619. doi: https://doi.org/10.1007/s11627-012-9472-x
dc.relation.referencesKlimova, N. (2006). Deiaki pytannia metodyky otsinky stanu
dc.relation.referenceszabrudnennia gruntiv unaslidok naftohazovydobutku [Some
dc.relation.referencesquestions of the methodic of soil pollution state value as a
dc.relation.referencesresult of oil and gas mining]. Visnyk Lvivskoho
dc.relation.referencesUniversytetu. Seriia «Heohrafiia», 33, 144–151. doi:
dc.relation.referenceshttp://dx.doi.org/10.30970/vgg.2006.33.2674
dc.relation.referencesMatsiuk, D. (2006). Ekonomiko-matematychni ta ekolohoenerhetychni
dc.relation.referencesaspekty vykorystannia sukhoi biomasy yak
dc.relation.referencesalternatyvnoho dzherela enerhii [Economic-mathematical
dc.relation.referencesand ecological-power aspects of dry mass usage as
dc.relation.referencesalternative source of energy]. Visnyk Vinnytskoho
dc.relation.referencesPolitekhnichnoho Instytutu, 5, 111–113. Retrieved from
dc.relation.referenceshttps://visnyk.vntu.edu.ua/index.php/visnyk/article/view/348
dc.relation.referencesMedkov, A., Stefanovska, T., Pidlisniuk, V., & Ponomarenko, S.
dc.relation.references(2017). Vplyv rehuliatoriv rostu roslyn na adaptyvni
dc.relation.referencesvlastyvosti miskantusu hihantskoho (Miscanthus x
dc.relation.referencesgiganteus) dlia vyrobnytstva biomasy na gruntakh,
dc.relation.referenceszabrudnenykh vazhkymy metalamy [Impact of plant growth
dc.relation.referencesregulators to Miscanthus x giganteus establishment while
dc.relation.referencesproducing biomass at land contaminated by heavy metals].
dc.relation.referencesBiolohichni Studii, 11(3-4), 100–101. doi: http://dx.doi.org/10.30970/sbi.1103
dc.relation.referencesMusiienko, M., Parshykova, T., & Slavnyi, P. (2001).
dc.relation.referencesSpektrofotometrychni metody v praktytsi fiziolohii,
dc.relation.referencesbiokhimii ta ekolohii roslyn [Spectrophotometric methods
dc.relation.referencesin the practice of physiology, biochemistry and plant
dc.relation.referencesecology]. Fitosotsiotsentr, Kyiv.
dc.relation.referencesPark, S., Kim, K. S., Kim, J.-T., Kang, D., & Sung, K. (2011).
dc.relation.referencesEffects of humic acid on phytodegradation of petroleum
dc.relation.referenceshydrocarbons in soil simultaneously contaminated with
dc.relation.referencesheavy metals. Journal of Environmental Sciences, 23(12), 2034–2041. doi: https://doi.org/10.1016/s1001-0742(10)60670-5
dc.relation.referencesPidlisnyuk, V., Trögl, J., Stefanovska, T., Shapoval, P., &
dc.relation.referencesErickson, L. (2016). Preliminary results on growing second
dc.relation.referencesgeneration biofuel crop miscanthus x giganteus at the
dc.relation.referencespolluted military site in Ukraine. Nova Biotechnologica Et
dc.relation.referencesChimica, 15(1), 77–84. doi: https://doi.org/10.1515/nbec-2016-0008
dc.relation.referencesPodan, I. I., & Dzhura, N. M. (2019). Influence of oil pollution
dc.relation.referencesand humates on growth of Miscanthus Plants. Ecological
dc.relation.referencesSciences, 2, 182–186. doi: https://doi.org/10.32846/2306-9716-2019-2-25-30
dc.relation.referencesStefanovska, T., Pidlisniuk, v, Bilyi, O., Kvak, V., Tsvihun, H.,
dc.relation.references&Shapoval, P. (2017). Ahronomichni aspekty vyroshchuvannia
dc.relation.referencesmiskantusu hihantskoho (Miscanthus xgiganteus) yak
dc.relation.referencessyrovyny dlia vyrobnytstva tverdoho biopalyva na
dc.relation.referenceszabrudnenykh vnaslidok viiskovoi diialnosti gruntakh
dc.relation.references[Agronomic aspects of growing Miscanthus x giganteus as
dc.relation.referencesa raw material for the production of solid biofuels on soils
dc.relation.referencescontaminated because of military activity]. Biolohichni
dc.relation.referencesStudii, 11(3-4), 99–100. doi: http://dx.doi.org/10.30970/sbi.1103
dc.relation.referencesTumanyan, A., Tyutyuma, N., Bondarenko, A., &
dc.relation.referencesShcherbakova, N. (2017). Influence of Oil Pollution on
dc.relation.referencesVarious Types of Soil. Chemistry and Technology of Fuels
dc.relation.referencesand Oils, 53(3), 369–376. doi: http://dx.doi.org/10.1007/s10553-017-0813-7
dc.relation.referencesTurgay, O. C., Erdogan, E. E., & Karaca, A. (2009). Effect of
dc.relation.referenceshumic deposit (leonardite) on degradation of semi-volatile
dc.relation.referencesand heavy hydrocarbons and soil quality in crude-oilcontaminated
dc.relation.referencessoil. Environmental Monitoring and
dc.relation.referencesAssessment, 170(1-4), 45–58. doi: https://doi.org/10.1007/s10661-009-1213-1
dc.relation.referencesenBanks, M. K., & Schultz, K. E. (2005). Comparison of plants
dc.relation.referencesenfor germination toxicity tests in petroleum-contaminated
dc.relation.referencesensoils. Water, Air, and Soil Pollution, 167 (1-4), 211–219.
dc.relation.referencesendoi: https://doi.org/10.1007/s11270-005-8553-4
dc.relation.referencesenDanalatos, N., Archontoulis, S., & Mitsios, I. (2007). Potential
dc.relation.referencesengrowth and biomass productivity of miscanthus×giganteus
dc.relation.referencesenas affected by plant density and N-fertilization in Central
dc.relation.referencesenGreece. Biomass and Bioenergy, 31(2-3), 145–152. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.biombioe.2006.07.004
dc.relation.referencesenDzhura, N. (2011). Perspektyvy fitoremediatsii naftozabrudnenykh
dc.relation.referencesengruntiv roslynamy Faba bona Medic. (Vicia faba L.)
dc.relation.referencesen[Prospects for phytoremediation of oil-contaminated soils
dc.relation.referencesenby Faba bona Medic plants. (Vicia faba L.)]. Visnyk
dc.relation.referencesenLvivskoho Universytetu. Seriia Biolohichna, (57), 117–124.
dc.relation.referencesenRetrieved from http://prima.lnu.edu.ua/faculty/biologh/wis/57/6/15/15.pdf
dc.relation.referencesenDzhura, N., & Podan, I. (2017). Ekolohichni naslidky
dc.relation.referencesendovhotryvaloho naftovydobutku na Starosambirskomu
dc.relation.referencesenrodovyshchi [Ecological consequences of extended oil
dc.relation.referencesenproduction at Staryi Sambir petroleum deposit]. Visnyk
dc.relation.referencesenLvivskoho Universytetu. Seriia Biolohichna, 76, 120–127.
dc.relation.referencesenRetrieved from http://prima.lnu.edu.ua/faculty/biologh/wis/76/4/15/15.pdf
dc.relation.referencesenGorova, A., Pavlychenko, A., Kulyna, S. and Shkremetko, O.,
dc.relation.referencesen(2012). Ecological problems of post-industrial mining
dc.relation.referencesenareas. Geomechanical Processes During Underground
dc.relation.referencesenMining, 35‒40. doi: https://doi.org/10.1201/b13157
dc.relation.referencesenGupta, V. K., Jain, P. K., Gaur, R. K., Lowry, M., Jaroli, D. P.,
dc.relation.referencesen& Chauhan, U. K. (2011). Bioremediation of petroleum oil
dc.relation.referencesencontaminated soil and water. Research Journal of
dc.relation.referencesenEnvironmental Toxicology, 5(1), 1–26. doi: https://doi.org/10.3923/rjet.2011.1.26
dc.relation.referencesenHorova, A., Pavlychenko, A., & Vysochyn, L. (2015).
dc.relation.referencesenVykorystannia huminovykh rechovyn dlia vidnovlennia
dc.relation.referencesengruntiv u hirnychodobuvnykh rehionakh [Use of humic
dc.relation.referencesensubstances for soil restoration in mining regions]. II
dc.relation.referencesenInternational Scientific and Practical Conference
dc.relation.referencesenRestoration of Biotic Potential of Agroecosystems (pp. 50–51).
dc.relation.referencesenDnipropetrovsk; Arbuz.
dc.relation.referencesenKim, S., Da, K., &Mei, C. (2012). An efficient system for highquality
dc.relation.referencesenlarge-scale micropropagation of miscanthus × giganteus
dc.relation.referencesenplants. In Vitro Cellular & Developmental Biology - Plant, 48(6), 613–619. doi: https://doi.org/10.1007/s11627-012-9472-x
dc.relation.referencesenKlimova, N. (2006). Deiaki pytannia metodyky otsinky stanu
dc.relation.referencesenzabrudnennia gruntiv unaslidok naftohazovydobutku [Some
dc.relation.referencesenquestions of the methodic of soil pollution state value as a
dc.relation.referencesenresult of oil and gas mining]. Visnyk Lvivskoho
dc.relation.referencesenUniversytetu. Seriia "Heohrafiia", 33, 144–151. doi:
dc.relation.referencesenhttp://dx.doi.org/10.30970/vgg.2006.33.2674
dc.relation.referencesenMatsiuk, D. (2006). Ekonomiko-matematychni ta ekolohoenerhetychni
dc.relation.referencesenaspekty vykorystannia sukhoi biomasy yak
dc.relation.referencesenalternatyvnoho dzherela enerhii [Economic-mathematical
dc.relation.referencesenand ecological-power aspects of dry mass usage as
dc.relation.referencesenalternative source of energy]. Visnyk Vinnytskoho
dc.relation.referencesenPolitekhnichnoho Instytutu, 5, 111–113. Retrieved from
dc.relation.referencesenhttps://visnyk.vntu.edu.ua/index.php/visnyk/article/view/348
dc.relation.referencesenMedkov, A., Stefanovska, T., Pidlisniuk, V., & Ponomarenko, S.
dc.relation.referencesen(2017). Vplyv rehuliatoriv rostu roslyn na adaptyvni
dc.relation.referencesenvlastyvosti miskantusu hihantskoho (Miscanthus x
dc.relation.referencesengiganteus) dlia vyrobnytstva biomasy na gruntakh,
dc.relation.referencesenzabrudnenykh vazhkymy metalamy [Impact of plant growth
dc.relation.referencesenregulators to Miscanthus x giganteus establishment while
dc.relation.referencesenproducing biomass at land contaminated by heavy metals].
dc.relation.referencesenBiolohichni Studii, 11(3-4), 100–101. doi: http://dx.doi.org/10.30970/sbi.1103
dc.relation.referencesenMusiienko, M., Parshykova, T., & Slavnyi, P. (2001).
dc.relation.referencesenSpektrofotometrychni metody v praktytsi fiziolohii,
dc.relation.referencesenbiokhimii ta ekolohii roslyn [Spectrophotometric methods
dc.relation.referencesenin the practice of physiology, biochemistry and plant
dc.relation.referencesenecology]. Fitosotsiotsentr, Kyiv.
dc.relation.referencesenPark, S., Kim, K. S., Kim, J.-T., Kang, D., & Sung, K. (2011).
dc.relation.referencesenEffects of humic acid on phytodegradation of petroleum
dc.relation.referencesenhydrocarbons in soil simultaneously contaminated with
dc.relation.referencesenheavy metals. Journal of Environmental Sciences, 23(12), 2034–2041. doi: https://doi.org/10.1016/s1001-0742(10)60670-5
dc.relation.referencesenPidlisnyuk, V., Trögl, J., Stefanovska, T., Shapoval, P., &
dc.relation.referencesenErickson, L. (2016). Preliminary results on growing second
dc.relation.referencesengeneration biofuel crop miscanthus x giganteus at the
dc.relation.referencesenpolluted military site in Ukraine. Nova Biotechnologica Et
dc.relation.referencesenChimica, 15(1), 77–84. doi: https://doi.org/10.1515/nbec-2016-0008
dc.relation.referencesenPodan, I. I., & Dzhura, N. M. (2019). Influence of oil pollution
dc.relation.referencesenand humates on growth of Miscanthus Plants. Ecological
dc.relation.referencesenSciences, 2, 182–186. doi: https://doi.org/10.32846/2306-9716-2019-2-25-30
dc.relation.referencesenStefanovska, T., Pidlisniuk, v, Bilyi, O., Kvak, V., Tsvihun, H.,
dc.relation.referencesen&Shapoval, P. (2017). Ahronomichni aspekty vyroshchuvannia
dc.relation.referencesenmiskantusu hihantskoho (Miscanthus xgiganteus) yak
dc.relation.referencesensyrovyny dlia vyrobnytstva tverdoho biopalyva na
dc.relation.referencesenzabrudnenykh vnaslidok viiskovoi diialnosti gruntakh
dc.relation.referencesen[Agronomic aspects of growing Miscanthus x giganteus as
dc.relation.referencesena raw material for the production of solid biofuels on soils
dc.relation.referencesencontaminated because of military activity]. Biolohichni
dc.relation.referencesenStudii, 11(3-4), 99–100. doi: http://dx.doi.org/10.30970/sbi.1103
dc.relation.referencesenTumanyan, A., Tyutyuma, N., Bondarenko, A., &
dc.relation.referencesenShcherbakova, N. (2017). Influence of Oil Pollution on
dc.relation.referencesenVarious Types of Soil. Chemistry and Technology of Fuels
dc.relation.referencesenand Oils, 53(3), 369–376. doi: http://dx.doi.org/10.1007/s10553-017-0813-7
dc.relation.referencesenTurgay, O. C., Erdogan, E. E., & Karaca, A. (2009). Effect of
dc.relation.referencesenhumic deposit (leonardite) on degradation of semi-volatile
dc.relation.referencesenand heavy hydrocarbons and soil quality in crude-oilcontaminated
dc.relation.referencesensoil. Environmental Monitoring and
dc.relation.referencesenAssessment, 170(1-4), 45–58. doi: https://doi.org/10.1007/s10661-009-1213-1
dc.relation.urihttps://doi.org/10.1007/s11270-005-8553-4
dc.relation.urihttps://doi.org/10.1016/j.biombioe.2006.07.004
dc.relation.urihttp://prima.lnu.edu.ua/faculty/biologh/wis/57/6/15/15.pdf
dc.relation.urihttp://prima.lnu.edu.ua/faculty/biologh/wis/76/4/15/15.pdf
dc.relation.urihttps://doi.org/10.1201/b13157
dc.relation.urihttps://doi.org/10.3923/rjet.2011.1.26
dc.relation.urihttps://doi.org/10.1007/s11627-012-9472-x
dc.relation.urihttp://dx.doi.org/10.30970/vgg.2006.33.2674
dc.relation.urihttps://visnyk.vntu.edu.ua/index.php/visnyk/article/view/348
dc.relation.urihttp://dx.doi.org/10.30970/sbi.1103
dc.relation.urihttps://doi.org/10.1016/s1001-0742(10)60670-5
dc.relation.urihttps://doi.org/10.1515/nbec-2016-0008
dc.relation.urihttps://doi.org/10.32846/2306-9716-2019-2-25-30
dc.relation.urihttp://dx.doi.org/10.1007/s10553-017-0813-7
dc.relation.urihttps://doi.org/10.1007/s10661-009-1213-1
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Dzhura N., Boretska I., Podan I., 2022
dc.subjectoil-contaminated soils
dc.subjecthumates
dc.subjectPoaceae
dc.subjectplant growth
dc.subjectphotosynthetic pigments
dc.subjectphytoremediation
dc.titleImpact of Oil Contamination and Humates on the Growth of Poaceae
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v7n2_Dzhura_N-Impact_of_Oil_Contamination_62-70.pdf
Size:
752.32 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v7n2_Dzhura_N-Impact_of_Oil_Contamination_62-70__COVER.png
Size:
1006.5 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: