Хімічна стійкість і стабілізація нітрату крохмалю
| dc.citation.epage | 34 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 27 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Сумський державний університет | |
| dc.contributor.affiliation | Sumy State University | |
| dc.contributor.author | Лукашов, В. К. | |
| dc.contributor.author | Тищенко, С. Д. | |
| dc.contributor.author | Lukashov, V. K. | |
| dc.contributor.author | Tishchenko, S. D. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T08:00:05Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Досліджено процеси забезпечення хімічної стійкості (стабілізації) нітрату крохмалю, одержаного нітруванням крохмалю двома способами: нітратною кислотою та нітратно-сульфатнокислотною сумішшю. Підтверджено, що у першому випадку нітрат крохмалю значно стійкіший внаслідок відсутності в ньому малостійких сульфатнокислотних естерів. Показано, що для забезпечення стійкості в цьому випадку достатньо 10 хв промивати нітрату крохмаль в 0,19 м3/кг гарячої (95 °C) води. Встановлено, що у випадку нітрування нітратною кислотою зі зростанням вмісту нітрогену в нітраті крохмалю, який характеризує кількість у ньому нітроестерних зв’язків, температура початку активного розкладання зменшується, наближаючись до 168 °C для граничного вмісту нітрогену (14,14 %). Цю температуру запропоновано як показник для оцінювання хімічної стійкості нітрату крохмалю. Одержані дані необхідні для розроблення технології виробництва нітрату крохмалю. | |
| dc.description.abstract | It was studied the processes of ensuring chemical stability (stabilization) of starch nitrate obtained by nitration of starch by two ways: nitric acid and nitric-sulfuric acid mixture. It has been confirmed that, in the first case, starch nitrate has much higher stability due to the absence of low-stable sulfuric acid esters. It is shown that to ensure it in this case, 10 minutes of washing of starch nitrate in 0.19 m3/kg of hot water (95 °C) is sufficient. It was established that in the case of nitration with nitric acid, an increase in the nitrogen content in starch nitrate, which characterizes the amount of nitroester bonds in it, leads to a decrease of the temperature at the beginning of active decomposition, which approaches 168 °C for the maximum nitrogen content (14.14 %). This temperature is proposed as an indicator for evaluation of starch nitrate chemical resistance. The obtained data are necessary for the development of starch nitrate production technology. | |
| dc.format.extent | 27-34 | |
| dc.format.pages | 8 | |
| dc.identifier.citation | Лукашов В. К. Хімічна стійкість і стабілізація нітрату крохмалю / В. К. Лукашов, С. Д. Тищенко // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 27–34. | |
| dc.identifier.citationen | Lukashov V. K. Chemical resistance and stabilization of starch nitrate / V. K. Lukashov, S. D. Tishchenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 27–34. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.027 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111755 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Sahnoun, N., Abdelaziz, A., Tarchoun, A. F., Boukeciat, H., Mezroua, A., & Trache, D. (2022). Nitrostarch as a promising insensitive energetic biopolymer: Synthesis, characterization, and thermal decomposition kinetics. Industrial Crops and Products, 189, 115774. https://doi.org/10.1016/j.indcrop.2022.115774 | |
| dc.relation.references | 2. Sahnoun, N., Abdelaziz, A., Trache, D., Tarchoun, A. F., Bessa, W., Mahdjoub, A. S., & Thakur, S. (2023). Unrevealing the role of the sulfonitric media composition on the design and properties of potato starch-based nitrogen-rich biopolymer. Industrial Crops and Products, 205, 117536. https://doi.org/10.1016/j.indcrop.2023.117536 | |
| dc.relation.references | 3. TM 9-1300-214. (1984). Military Explosives (pp. 1-355). Washington: Headquarters Department of the Army. | |
| dc.relation.references | 4. Gańczyk-Specjalska, K. (2019). Conventional and alternative nitrocellulose stabilisers used in gun propellants. Materiały Wysokoenergetyczne/ High Energy Materials, 11 (2), 73-82. https://doi.org/10.22211/matwys/0175 | |
| dc.relation.references | 5. Liu, J. (2019). Nitrate esters chemistry and technology (pp. 1-683). Singapore: Springer. https://doi.org/10.1007/978-981-13-6647-5 | |
| dc.relation.references | 6. Tian, R., Li, K., Lin, Y., Lu, C., & Duan, X. (2023). Characterization techniques of polymer aging: From beginning to end. Chemical Reviews, 123(6), 3007-3088. https://doi.org/10.1021/acs.chemrev.2c00750 | |
| dc.relation.references | 7. Caesar, G. V. (1958). Starch nitrate. Advances in Carbohydrate Chemistry, 13, 331-345. https://doi.org/10.1016/S0096-5332(08)60360-4 | |
| dc.relation.references | 8. Zimmerman, W., Sieper, G. A., Reinhardt, L.(1961). U.S. Patent № 2,995,549. | |
| dc.relation.references | 9. Lukashov, V. K., Tishchenko, S. D., Shevtsova, T. N., & Sereda, V. I. (2022). Kinetics of starch nitration process with nitric acid. Journal of Chemistry and Technologies, 30 (3), 451-458. https://doi.org/10.15421/jchemtech.v30i3.262889 | |
| dc.relation.references | 10. Lukashov, V. K., Tishchenko, S. D., Shevtsova, T. N., & Sereda, V. I. (2022). Patterns of the process of starch nitration with nitric acid.Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 66-72. https://doi.org/10.32434/0321-4095-2023-146-1-66-72 | |
| dc.relation.references | 11. Lukashov V. K., Sereda V. I., Tishchenko S. D. (2019). Technological aspects of nitration of starch with nitrogen-sulfur acid mixture. Journal of Chemistry and Technologies. 27 (2), 169-178. https://doi.org/10.15421/081918 | |
| dc.relation.references | 12. Wei, R., Huang, S., Wang, Z., Wang, X., Ding, C., Yuen, R., & Wang, J. (2019). Thermal behavior of nitrocellulose with different aging periods. Journal of Thermal Analysis and Calorimetry, 136, 651-660. https://doi.org/10.1007/s10973-018-7653-5 | |
| dc.relation.references | 13. Akhavan, J. (2022). The Chemistry of Explosives 4E. Royal Society of Chemistry. https://doi.org/10.1039/9781839168802 | |
| dc.relation.references | 14. Pourmortazavi, S. M., Hosseini, S. G., Rahimi-Nasrabadi, M., Hajimirsadeghi, S. S., & Momenian, H. (2009). Effect of nitrate content on thermal decomposition of nitrocellulose. Journal of hazardous materials, 162(2-3), 1141-1144. https://doi.org/10.1016/j.jhazmat.2008.05.161 | |
| dc.relation.references | 15. Vogelsanger, B. (2004). Chemical stability, compatibility and shelf life of explosives. Chimia, 58(6), 401-401. https://doi.org/10.2533/000942904777677740 | |
| dc.relation.references | 16. Liu, H. L. (2003). Waste minimization at a nitrocellulose manufacturing facility. International journal of environmental studies, 60(4), 353-361. https://doi.org/10.1080/00207230304725 | |
| dc.relation.referencesen | 1. Sahnoun, N., Abdelaziz, A., Tarchoun, A. F., Boukeciat, H., Mezroua, A., & Trache, D. (2022). Nitrostarch as a promising insensitive energetic biopolymer: Synthesis, characterization, and thermal decomposition kinetics. Industrial Crops and Products, 189, 115774. https://doi.org/10.1016/j.indcrop.2022.115774 | |
| dc.relation.referencesen | 2. Sahnoun, N., Abdelaziz, A., Trache, D., Tarchoun, A. F., Bessa, W., Mahdjoub, A. S., & Thakur, S. (2023). Unrevealing the role of the sulfonitric media composition on the design and properties of potato starch-based nitrogen-rich biopolymer. Industrial Crops and Products, 205, 117536. https://doi.org/10.1016/j.indcrop.2023.117536 | |
| dc.relation.referencesen | 3. TM 9-1300-214. (1984). Military Explosives (pp. 1-355). Washington: Headquarters Department of the Army. | |
| dc.relation.referencesen | 4. Gańczyk-Specjalska, K. (2019). Conventional and alternative nitrocellulose stabilisers used in gun propellants. Materiały Wysokoenergetyczne/ High Energy Materials, 11 (2), 73-82. https://doi.org/10.22211/matwys/0175 | |
| dc.relation.referencesen | 5. Liu, J. (2019). Nitrate esters chemistry and technology (pp. 1-683). Singapore: Springer. https://doi.org/10.1007/978-981-13-6647-5 | |
| dc.relation.referencesen | 6. Tian, R., Li, K., Lin, Y., Lu, C., & Duan, X. (2023). Characterization techniques of polymer aging: From beginning to end. Chemical Reviews, 123(6), 3007-3088. https://doi.org/10.1021/acs.chemrev.2c00750 | |
| dc.relation.referencesen | 7. Caesar, G. V. (1958). Starch nitrate. Advances in Carbohydrate Chemistry, 13, 331-345. https://doi.org/10.1016/S0096-5332(08)60360-4 | |
| dc.relation.referencesen | 8. Zimmerman, W., Sieper, G. A., Reinhardt, L.(1961). U.S. Patent No 2,995,549. | |
| dc.relation.referencesen | 9. Lukashov, V. K., Tishchenko, S. D., Shevtsova, T. N., & Sereda, V. I. (2022). Kinetics of starch nitration process with nitric acid. Journal of Chemistry and Technologies, 30 (3), 451-458. https://doi.org/10.15421/jchemtech.v30i3.262889 | |
| dc.relation.referencesen | 10. Lukashov, V. K., Tishchenko, S. D., Shevtsova, T. N., & Sereda, V. I. (2022). Patterns of the process of starch nitration with nitric acid.Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 66-72. https://doi.org/10.32434/0321-4095-2023-146-1-66-72 | |
| dc.relation.referencesen | 11. Lukashov V. K., Sereda V. I., Tishchenko S. D. (2019). Technological aspects of nitration of starch with nitrogen-sulfur acid mixture. Journal of Chemistry and Technologies. 27 (2), 169-178. https://doi.org/10.15421/081918 | |
| dc.relation.referencesen | 12. Wei, R., Huang, S., Wang, Z., Wang, X., Ding, C., Yuen, R., & Wang, J. (2019). Thermal behavior of nitrocellulose with different aging periods. Journal of Thermal Analysis and Calorimetry, 136, 651-660. https://doi.org/10.1007/s10973-018-7653-5 | |
| dc.relation.referencesen | 13. Akhavan, J. (2022). The Chemistry of Explosives 4E. Royal Society of Chemistry. https://doi.org/10.1039/9781839168802 | |
| dc.relation.referencesen | 14. Pourmortazavi, S. M., Hosseini, S. G., Rahimi-Nasrabadi, M., Hajimirsadeghi, S. S., & Momenian, H. (2009). Effect of nitrate content on thermal decomposition of nitrocellulose. Journal of hazardous materials, 162(2-3), 1141-1144. https://doi.org/10.1016/j.jhazmat.2008.05.161 | |
| dc.relation.referencesen | 15. Vogelsanger, B. (2004). Chemical stability, compatibility and shelf life of explosives. Chimia, 58(6), 401-401. https://doi.org/10.2533/000942904777677740 | |
| dc.relation.referencesen | 16. Liu, H. L. (2003). Waste minimization at a nitrocellulose manufacturing facility. International journal of environmental studies, 60(4), 353-361. https://doi.org/10.1080/00207230304725 | |
| dc.relation.uri | https://doi.org/10.1016/j.indcrop.2022.115774 | |
| dc.relation.uri | https://doi.org/10.1016/j.indcrop.2023.117536 | |
| dc.relation.uri | https://doi.org/10.22211/matwys/0175 | |
| dc.relation.uri | https://doi.org/10.1007/978-981-13-6647-5 | |
| dc.relation.uri | https://doi.org/10.1021/acs.chemrev.2c00750 | |
| dc.relation.uri | https://doi.org/10.1016/S0096-5332(08)60360-4 | |
| dc.relation.uri | https://doi.org/10.15421/jchemtech.v30i3.262889 | |
| dc.relation.uri | https://doi.org/10.32434/0321-4095-2023-146-1-66-72 | |
| dc.relation.uri | https://doi.org/10.15421/081918 | |
| dc.relation.uri | https://doi.org/10.1007/s10973-018-7653-5 | |
| dc.relation.uri | https://doi.org/10.1039/9781839168802 | |
| dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2008.05.161 | |
| dc.relation.uri | https://doi.org/10.2533/000942904777677740 | |
| dc.relation.uri | https://doi.org/10.1080/00207230304725 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | крохмаль | |
| dc.subject | нітратна кислота | |
| dc.subject | нітрування | |
| dc.subject | нітрат крохмалю | |
| dc.subject | хімічна стійкість | |
| dc.subject | starch | |
| dc.subject | nitric acid | |
| dc.subject | nitration | |
| dc.subject | starch nitrate | |
| dc.subject | chemical resistance | |
| dc.title | Хімічна стійкість і стабілізація нітрату крохмалю | |
| dc.title.alternative | Chemical resistance and stabilization of starch nitrate | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1