Study of Se-based microgel catalyst for heterophase benzaldehyde oxidation

dc.citation.epage70
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage66
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет імені Івана Франка
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University
dc.contributor.authorПавлюк, А. С.
dc.contributor.authorХарандюк, Т. В.
dc.contributor.authorМайкова, С. В.
dc.contributor.authorІвасів, В. В.
dc.contributor.authorНебесний, Р. В.
dc.contributor.authorPavliuk, A. S.
dc.contributor.authorKharandiuk, T. V.
dc.contributor.authorMaykova, S. V.
dc.contributor.authorIvasiv, V. V.
dc.contributor.authorNebesnyi, R. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:40Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractБензальдегід окиснювали пероксидом водню у гетерофазній системі з різним співвідношенням бензолу і води з використанням каталізаторів на основі селену. Для реакції, яку проводили у співвідношенні бензол:вода = 4:1, Se-мікрогель виявився високоактивним колоїдним каталізатором і дав змогу досягти 94,1 % виходу бензойної кислоти за 60 ºС. Синтезований мікрогель, модифікований Se, демонструє виняткову каталітичну активність у реакціях окиснення на межі поділу фаз у різних гетерофазних системах, за різних температур.
dc.description.abstractBenzaldehyde was oxidized with hydrogen peroxide in the heterophase system with different ratios of benzene and water using selenium-based catalysts. For the reaction, which was carried out in the ratio of benzene:water = 4:1, Se-microgel proved to be a highly active colloidal catalyst and allowed to achieve 94.1 % yield of benzoic acid at 60 °C. The synthesized Se-modified microgel demonstrates exceptional catalytic activity in oxidation reactions at the interface in various heterophase systems at different temperatures.
dc.format.extent66-70
dc.format.pages5
dc.identifier.citationStudy of Se-based microgel catalyst for heterophase benzaldehyde oxidation / A. S. Pavliuk, T. V. Kharandiuk, S. V. Maykova, V. V. Ivasiv, R. V. Nebesnyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 66–70.
dc.identifier.citationenStudy of Se-based microgel catalyst for heterophase benzaldehyde oxidation / A. S. Pavliuk, T. V. Kharandiuk, S. V. Maykova, V. V. Ivasiv, R. V. Nebesnyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 66–70.
dc.identifier.doidoi.org/10.23939/ctas2024.01.066
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111728
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Pal, N.; Bhaumik, A. (2015) Mesoporous Materials: Versatile Supports in Heterogeneous Catalysis for Liquid Phase Catalytic Transformations. RSC Adv,5 (31), 24363-24391. https://doi.org/10.1039/c4ra13077d.
dc.relation.references2. Tan, H.; Zhang, P.; Wang, L.; Yang, D.; Zhou, K. (2011) Multifunctional Amphiphilic Carbonaceous Microcapsules Catalyze Water/Oil Biphasic Reactions. Chem. Commun,47 (43), 11903-11905. https://doi.org/10.1039/c1cc15654c.
dc.relation.references3. Wilson, K.; Clark, J. H. (2000) Solid Acids and Their Use as Environmentally Friendly Catalysts in Organic Synthesis. Pure Appl. Chem,72 (7), 1313-1319. https://doi.org/10.1351/pac200072071313.
dc.relation.references4. Samanta, S.; Mal, N. K.; Bhaumik, A. (2005) Mesoporous Cr-MCM-41: An Efficient Catalyst for Selective Oxidation of Cycloalkanes. J. Mol. Catal. A Chem,236 (1-2), 7-11. https://doi.org/10.1016/j.molcata.2005.04.005.
dc.relation.references5. Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. (2010) Solid Nanoparticles That Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science,327 (5961), 68-72. https://doi.org/10.1126/science.1180769.
dc.relation.references6. Drexler, S.; Faria, J.; Ruiz, M. P.; Harwell, J. H.; Resasco, D. E. (2012) Amphiphilic Nanohybrid Catalysts for Reactions at the Water/Oil Interface in Subsurface Reservoirs. Energy and Fuels,26 (4), 2231-2241. https://doi.org/10.1021/ef300119p.
dc.relation.references7. Yang, X.; Liang, Y.; Zhao, X.; Song, Y.; Hu, L.; Wang, X.; Wang, Z.; Qiu, J. (2014) Au/CNTs Catalyst for Highly Selective Hydrodeoxygenation of Vanillin at the Water/Oil Interface. RSC Adv.,4 (60), 31932-31936. https://doi.org/10.1039/c4ra04692g.
dc.relation.references8. Spears, M. W.; Herman, E. S.; Gaulding, J. C.; Lyon, L. A. (2014) Dynamic Materials from Microgel Multilayers. Langmuir,30 (22), 6314-6323. https://doi.org/10.1021/la403058t.
dc.relation.references9. Tan, K. H.; Xu, W.; Stefka, S.; Demco, D. E.; Kharandiuk, T.; Ivasiv, V.; Nebesnyi, R.; Petrovskii, V. S.; Potemkin, I. I.; Pich, A. (2019) Selenium-Modified Microgels as Bio-Inspired Oxidation Catalysts. Angew. Chemie - Int. Ed,58 (29), 9791-9796. https://doi.org/10.1002/anie.201901161.
dc.relation.references10. Nebesnyi, R.; Ivasiv, V.; Pikh, Z.; Kharandiuk, T.; Shpyrka, I.; Voronchak, T.; Shatan, A. B. (2019) Low Temperature Acrolein to Acrylic Acid Oxidation with Hydrogen Peroxide on Se-Organic Catalysts. Chem. Chem. Technol,13 (1), 38-45. https://doi.org/10.23939/chcht13.01.038.
dc.relation.referencesen1. Pal, N.; Bhaumik, A. (2015) Mesoporous Materials: Versatile Supports in Heterogeneous Catalysis for Liquid Phase Catalytic Transformations. RSC Adv,5 (31), 24363-24391. https://doi.org/10.1039/P.4ra13077d.
dc.relation.referencesen2. Tan, H.; Zhang, P.; Wang, L.; Yang, D.; Zhou, K. (2011) Multifunctional Amphiphilic Carbonaceous Microcapsules Catalyze Water/Oil Biphasic Reactions. Chem. Commun,47 (43), 11903-11905. https://doi.org/10.1039/P.1cc15654c.
dc.relation.referencesen3. Wilson, K.; Clark, J. H. (2000) Solid Acids and Their Use as Environmentally Friendly Catalysts in Organic Synthesis. Pure Appl. Chem,72 (7), 1313-1319. https://doi.org/10.1351/pac200072071313.
dc.relation.referencesen4. Samanta, S.; Mal, N. K.; Bhaumik, A. (2005) Mesoporous Cr-MCM-41: An Efficient Catalyst for Selective Oxidation of Cycloalkanes. J. Mol. Catal. A Chem,236 (1-2), 7-11. https://doi.org/10.1016/j.molcata.2005.04.005.
dc.relation.referencesen5. Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. (2010) Solid Nanoparticles That Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science,327 (5961), 68-72. https://doi.org/10.1126/science.1180769.
dc.relation.referencesen6. Drexler, S.; Faria, J.; Ruiz, M. P.; Harwell, J. H.; Resasco, D. E. (2012) Amphiphilic Nanohybrid Catalysts for Reactions at the Water/Oil Interface in Subsurface Reservoirs. Energy and Fuels,26 (4), 2231-2241. https://doi.org/10.1021/ef300119p.
dc.relation.referencesen7. Yang, X.; Liang, Y.; Zhao, X.; Song, Y.; Hu, L.; Wang, X.; Wang, Z.; Qiu, J. (2014) Au/CNTs Catalyst for Highly Selective Hydrodeoxygenation of Vanillin at the Water/Oil Interface. RSC Adv.,4 (60), 31932-31936. https://doi.org/10.1039/P.4ra04692g.
dc.relation.referencesen8. Spears, M. W.; Herman, E. S.; Gaulding, J. C.; Lyon, L. A. (2014) Dynamic Materials from Microgel Multilayers. Langmuir,30 (22), 6314-6323. https://doi.org/10.1021/la403058t.
dc.relation.referencesen9. Tan, K. H.; Xu, W.; Stefka, S.; Demco, D. E.; Kharandiuk, T.; Ivasiv, V.; Nebesnyi, R.; Petrovskii, V. S.; Potemkin, I. I.; Pich, A. (2019) Selenium-Modified Microgels as Bio-Inspired Oxidation Catalysts. Angew. Chemie - Int. Ed,58 (29), 9791-9796. https://doi.org/10.1002/anie.201901161.
dc.relation.referencesen10. Nebesnyi, R.; Ivasiv, V.; Pikh, Z.; Kharandiuk, T.; Shpyrka, I.; Voronchak, T.; Shatan, A. B. (2019) Low Temperature Acrolein to Acrylic Acid Oxidation with Hydrogen Peroxide on Se-Organic Catalysts. Chem. Chem. Technol,13 (1), 38-45. https://doi.org/10.23939/chcht13.01.038.
dc.relation.urihttps://doi.org/10.1039/c4ra13077d
dc.relation.urihttps://doi.org/10.1039/c1cc15654c
dc.relation.urihttps://doi.org/10.1351/pac200072071313
dc.relation.urihttps://doi.org/10.1016/j.molcata.2005.04.005
dc.relation.urihttps://doi.org/10.1126/science.1180769
dc.relation.urihttps://doi.org/10.1021/ef300119p
dc.relation.urihttps://doi.org/10.1039/c4ra04692g
dc.relation.urihttps://doi.org/10.1021/la403058t
dc.relation.urihttps://doi.org/10.1002/anie.201901161
dc.relation.urihttps://doi.org/10.23939/chcht13.01.038
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectкаталіз
dc.subjectбензальдегід
dc.subjectокиснення
dc.subjectгетерофазні системи
dc.subjectмікрогелеві каталізатори
dc.subjectcatalysis
dc.subjectbenzaldehyde
dc.subjectoxidation
dc.subjectheterophase systems
dc.subjectmicrogel catalysts
dc.titleStudy of Se-based microgel catalyst for heterophase benzaldehyde oxidation
dc.title.alternativeДослідження мікрогелевого каталізатора на основі Se в реакції гетерофазного окиснення бензальдегіду
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Pavliuk_A_S-Study_of_Se_based_microgel_66-70.pdf
Size:
341.93 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Pavliuk_A_S-Study_of_Se_based_microgel_66-70__COVER.png
Size:
478.18 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: