Impact of non-tidal atmospheric loading on civil engineering structures

dc.citation.epage28
dc.citation.issue2(31)
dc.citation.journalTitleГеодинаміка
dc.citation.spage16
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТретяк, Корнилій
dc.contributor.authorБрусак, Іван
dc.contributor.authorБубняк, Ігор
dc.contributor.authorЗаблоцький, Федір
dc.contributor.authorTretyak, Kornyliy
dc.contributor.authorBrusak, Ivan
dc.contributor.authorBubniak, Ihor
dc.contributor.authorZablotskyi, Fedir
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T07:56:06Z
dc.date.available2023-07-03T07:56:06Z
dc.date.created2021-02-23
dc.date.issued2021-02-23
dc.description.abstractПроаналізовано висотний зсув ГНСС-пунктів великого інженерного об’єкта, спричинений неп- рипливним атмосферним навантаженням (NTAL). Об’єкти дослідження – Дністровська ГЕС-1 та її ГНСС-мережа моніторингу. Вихідними даними є RINEX-файли 14 ГНСС станцій Дністровської ГЕС-1 і вісім перманентних ГНСС-станцій у радіусі 100 км, модель NTAL, завантажена із репозиторію Німецького дослідницького центру геонаук GFZ за 2019–2021 рр., та матеріали щодо геологічної будови об’єкта. Методика передбачає порівняння та аналіз висотної складової часових рядів ГНСС з модель- ними значеннями NTAL й інтерпретацію їх геодинамічних зміщень, враховуючи аналіз їх геологічного розташування. У результаті встановлено, що пункти мережі Дністровської ГЕС-1 зазнають менших змін висоти, ніж перманентні ГНСС-станції у радіусі 100 км. Це відповідає різниці потужностей та щільності гірських порід під відповідними пунктами, тому вони зазнають різних пружних деформацій під впливом однакового навантаження NTAL. Окрім цього, виявлено різну динаміку зміщень пунктів на греблі та на берегах річки, що призводить до тріщин та деформацій у зоні контакту гребля – берег. Під час ано- мального впливу NTAL висоти навіть близько розташованих пунктів можуть змінитися, якщо геологічна будова під ними різна. У роботі показано, що для великих інженерних об’єктів варто застосовувати спеціальні моделі та поправки у високоточні інженерно-геодезичні виміри для урахування NTAL.
dc.description.abstractThe paper analyzes the vertical displacements of the GNSS sites of civil engineering structures caused by non-tidal atmospheric loading (NTAL). The object of the study is the Dnister Hydroelectric Power Plant No. 1 (HPP-1) and its GNSS monitoring network. The initial data are the RINEX-files of 14 GNSS stations of the Dnister HPP-1 and 8 permanent GNSS stations within a radius of 100 km, the NTAL model downloaded from the repository of German Research Centre for Geosciences GFZ for 2019–2021, and materials on the geological structure of the object. Methods include comparison and analysis of the altitude component of GNSS time series with model values of NTAL as well as interpretation of the geodynamic vertical displacements, taking into account the analysis of the geological structure. As a result, it was found that the sites of the GNSS network of the Dnister HPP-1 undergo less vertical displacements than the permanent GNSS stations within a radius of 100 km. This corresponds to the difference in thickness and density of the rocks under the GNSS sites and stations, so they undergo different elastic deformations by the same NTAL. In addition, the research detected different dynamics of vertical displacements of GNSS sites on the dam and on the river banks. It leads to cracks and deformations of concrete structures in the dam-bank contact zones. During the anomalous impact of NTAL, the altitude of even nearby sites can change if the geological structure beneath them is different. The work shows that for civil engineering structures it is necessary to apply special models to take into account NTAL deformations for high-precision engineering and geodetic measurements.
dc.format.extent16-28
dc.format.pages13
dc.identifier.citationImpact of non-tidal atmospheric loading on civil engineering structures / Kornyliy Tretyak, Ivan Brusak, Ihor Bubniak, Fedir Zablotskyi // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 2(31). — P. 16–28.
dc.identifier.citationenImpact of non-tidal atmospheric loading on civil engineering structures / Kornyliy Tretyak, Ivan Brusak, Ihor Bubniak, Fedir Zablotskyi // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 2(31). — P. 16–28.
dc.identifier.doidoi.org/10.23939/jgd2021.02.016
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59356
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2(31), 2021
dc.relation.ispartofGeodynamics, 2(31), 2021
dc.relation.referencesBarzaghi, R., Cazzaniga, N. E., De Gaetani, C. I.,
dc.relation.referencesPinto, L., & Tornatore, V. (2018). Estimating
dc.relation.referencesand comparing dam deformation using classical
dc.relation.referencesand GNSS techniques. Sensors, 18(3), 756.
dc.relation.referenceshttps://doi.org/10.3390/s18030756
dc.relation.referencesBehr, J. A., Hudnut, K. W., & King, N. E. (1998,
dc.relation.referencesSeptember). Monitoring structural deformation at
dc.relation.referencesPacoima dam, California using continuous GPS.
dc.relation.referencesIn Proceedings of the 11th International Technical
dc.relation.referencesMeeting of the Satellite Division of the Institute of
dc.relation.referencesNavigation (ION GPS 1998) (pp. 59–68).
dc.relation.referencesBisovetsky, Yu., Tretyak, К., and Shchuchik, E.
dc.relation.references(2011). Automation of geodetic observations of
dc.relation.referenceshydraulic structures of “Ukrhydroenergo”
dc.relation.referenceshydroelectric power stations. Hydropower of
dc.relation.referencesUkraine, 2, 45–51. (In Ukrainian)
dc.relation.referencesBrusak, I., & Tretyak, K. (2020, December). About
dc.relation.referencesthe phenomenon of subsidence in continental
dc.relation.referencesEurope in December 2019 based on the GNSS
dc.relation.referencesstations data. In International Conference
dc.relation.referencesof Young Professionals “GeoTerrace-2020”
dc.relation.references(Vol. 2020, No. 1, pp. 1–5). European Association
dc.relation.referencesof Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20205717.
dc.relation.referencesBrusak, I., & Tretyak, K. (2021, October). On the
dc.relation.referencesimpact of non-tidal atmospheric loading on the
dc.relation.referencesGNSS stations of regional networks and
dc.relation.referencesengineering facilities. In International Conference
dc.relation.referencesof Young Professionals “GeoTerrace-2021”.
dc.relation.referencesEuropean Association of Geoscientists &
dc.relation.referencesEngineers.
dc.relation.referencesBubniak, A. M., Bubniak, I. M., & Zyhar, A. I. (2020,
dc.relation.referencesMay). Lineaments analysis of the Dnister area
dc.relation.references(between Bakota and Novodnistrovsk). In
dc.relation.referencesGeoinformatics: Theoretical and Applied Aspects.
dc.relation.references(Vol. 2020, No. 1, pp. 1–4). European Association
dc.relation.referencesof Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2020geo110.
dc.relation.referencesDach, R., Böhm, J., Lutz, S., Steigenberger, P., &
dc.relation.referencesBeutler, G. (2011). Evaluation of the impact of
dc.relation.referencesatmospheric pressure loading modeling on GNSS
dc.relation.referencesdata analysis. Journal of geodesy, 85(2), 75–91.
dc.relation.referenceshttps://doi.org/10.1007/s00190-010-0417-z.
dc.relation.referencesDach, R., Lutz, S., Walser, P., & Fridez, P. (2015).
dc.relation.referencesBernese GNSS software version 5.2.
dc.relation.referencesDardanelli, G., La Loggia, G., Perfetti, N., Capodici, F.,
dc.relation.referencesPuccio, L., & Maltese, A. (2014, October).
dc.relation.referencesMonitoring displacements of an earthen dam using
dc.relation.referencesGNSS and remote sensing. In Remote Sensing for
dc.relation.referencesAgriculture, Ecosystems, and Hydrology XVI
dc.relation.references(Vol. 9239, p. 923–928). International Society for
dc.relation.referencesOptics and Photonics. https://doi.org/10.1117/12.2071222
dc.relation.referencesESMGFZ; Earth System Modelling at GFZ. Online
dc.relation.referencesAccess: http://esmdata.gfz-potsdam.de.
dc.relation.referencesGeological map of Ukraine (2008) in scale 1: 200 000. Volyn-Podilsky series, M-35-XXVIII (Bar),
dc.relation.referencesM35-XXXIV (Mohyliv-Podilsky). Explanatory
dc.relation.referencesnote (In Ukrainian).
dc.relation.referencesGlomsda, M., Bloßfeld, M., Gerstl, M., Kwak, Y.,
dc.relation.referencesSeitz, M., Angermann, D., & Seitz, F. (2019).
dc.relation.referencesImpact of non-tidal loading in VLBI analysis. In 24th Meeting of the European VLBI Group for
dc.relation.referencesGeodesy and Astrometry.
dc.relation.referencesKalinnikov, V., Ustinov, A., & Kosarev, N. (2020).
dc.relation.referencesImpact of atmospheric loadings on the results of
dc.relation.referencesGNSS monitoring of the main building of
dc.relation.referencesZagorskaya PSPP-2 by PPP method. Vestnik
dc.relation.referencesSGUGiT (Sibirskogo gosudarstvennogo universiteta
dc.relation.referencesgeosistem i tekhnologiy), 25(3), 34–41 (In
dc.relation.referencesRussian). DOI: 10.33764/2411-1759-2020-25-3-34-41.
dc.relation.referencesMémin, A., Boy, J. P., & Santamaria-Gomez, A.
dc.relation.references(2020). Correcting GPS measurements for nontidal
dc.relation.referencesloading. GPS Solutions, 24(2), 1–13.
dc.relation.referenceshttps://doi.org/10.1007/s10291-020-0959-3.
dc.relation.referencesMohylnyi, S., Sholomitskyi, A., Shmorhun E.,
dc.relation.referencesPryharov V. (2010) Automated system of geodetic
dc.relation.referencesmonitoring. Modern Achievements in Geodetic
dc.relation.referencesScience and Industry, 19, 193–197 (in Ukrainian).
dc.relation.referencesPetrov, L. (2015). The international mass loading
dc.relation.referencesservice. In REFAG 2014 (pp. 79–83). Springer,
dc.relation.referencesCham. https://doi.org/10.1007/1345_2015_218
dc.relation.referencesPetrov, L., & Boy, J. P. (2003). Study of the
dc.relation.referencesatmospheric pressure loading signal in VLBI
dc.relation.referencesobservations, submitted to J. Geophys. Res. DOI: 10.1029/2003JB002500.
dc.relation.referencesRodrigues, E. P. (2007). Estimation of crustal vertical
dc.relation.referencesmovements due to atmospheric loading effects
dc.relation.referencesby GPS observations. Revista Brasileira de
dc.relation.referencesGeofísica, 25, 45–50. https://doi.org/10.1590/S0102-261X2007000100004.
dc.relation.referencesSarnavski, V., Ovsiannikov, M., (2005) Tectonic
dc.relation.referencesstructure and geodynamic mode ofrock masses in
dc.relation.referencesthe zone of interaction with hydromechanical
dc.relation.referencesstructures of HPP and PSPP (on the example of
dc.relation.referencesthe Dnister complex hydro unit), Modern Achv.
dc.relation.referencesgeodetic Sci. Prod., 2, 193–206 (in Ukrainian).
dc.relation.referencesSavchyn, I., & Pronyshyn, R. (2020). Differentiation
dc.relation.referencesof recent local geodynamic and seismic processes
dc.relation.referencesof technogenic-loaded territories based on the
dc.relation.referencesexample of Dnister Hydro Power Complex
dc.relation.references(Ukraine). Geodesy and Geodynamics, 11 (5), 391–400.
dc.relation.referencesTregoning, P., & van Dam, T. (2005). Atmospheric
dc.relation.referencespressure loading corrections applied to GPS
dc.relation.referencesdata at the observation level. Geophysical
dc.relation.referencesResearch Letters, 32(22). https://doi.org/10.1029/ 2005GL024104.
dc.relation.referencesTregoning, P., & Watson, C. (2009). Atmospheric
dc.relation.referenceseffects and spurious signals in GPS analyses.
dc.relation.referencesJournal of Geophysical Research: Solid Earth, 114(B9).
dc.relation.referencesTretyak K., Periy S., Sidorov I., Babiy L. (2015)
dc.relation.referencesComplex High Accuracy Satellite and Field
dc.relation.referencesMeasurements of Horizontal and Vertical
dc.relation.referencesDisplacements of Control Geodetic Network
dc.relation.referenceson Dnister Hydroelectric Pumped Power
dc.relation.referencesStation (HPPS). Geomatics and environmental
dc.relation.referencesengineering, 9 (1), 83–96.
dc.relation.referencesTretyak, K. & Brusak, I. (2021). Method for detecting
dc.relation.referencesshort-term displacements of the Earth's surface by
dc.relation.referencesstatistical analysis of GNSS time series. Geodesy,
dc.relation.referencesCartography, and Aerial Photography, 93(1), 27–34. https://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesTretyak, К., Cranenbroeck, J., Balan, А., Lompas, О.,
dc.relation.referencesSavchyn, І. (2014) Posteriori optimization of
dc.relation.referencesaccuracy and reliability of active geodetic
dc.relation.referencesmonitoring network of the Dnister HPP. Geodesy,
dc.relation.referencesCartography, and Aerial Photography, 79, 5–14.
dc.relation.references(in Ukrainian)
dc.relation.referencesTretyak, К., Korliatovych Т., Brusak І., Smirnova О.
dc.relation.references(2021a) Differentiation of kinematics of the
dc.relation.referencesDnister HPP-1 dam (based on the data of
dc.relation.referencesGNSS monitoring of spatial displacements).
dc.relation.referencesModern Achv. geodetic Sci. Prod. 57–66 (in
dc.relation.referencesUkrainian). DOI: www.doi.org/10.33841/1819-1339-2-42-57-66
dc.relation.referencesTretyak, K., Korliatovych, T., Brusak, I., (2021b).
dc.relation.referencesApplying the statistical method of GNSS time
dc.relation.referencesseries analysis for the detection of vertical
dc.relation.referencesdisplacements of Dnister HPP-1 dam. In
dc.relation.referencesInternational Conference of Young Professionals
dc.relation.references“GeoTerrace-2021”. European Association of
dc.relation.referencesGeoscientists & Engineers.
dc.relation.referencesTretyak, К., Savchyn, І., Zayats, O., Golubinka, Yu.,
dc.relation.referencesLompas, О., & Bisovetsky, Yu. (2017).
dc.relation.referencesInstallation and maintenance of automated
dc.relation.referencessystems for control of spatial displacements of
dc.relation.referencesengineering structures of Ukrainian hydroelectric
dc.relation.referencespower plants. Hydropower of Ukraine, (1–2), 33–41 (in Ukrainian).
dc.relation.referencesTretyak, К., Zayats, O., Smirnova, O. (2016).
dc.relation.referencesCreation of an automated system for geodetic
dc.relation.referencesmonitoring of deformations. In VI International
dc.relation.referencesScientific Conference “Geophysical technologies
dc.relation.referencesfor forecasting and monitoring of the geological
dc.relation.referencesenvironment”, 272–275 (in Ukrainian).
dc.relation.referencesUkrhydroproject PRJSC (2017). Rules for the
dc.relation.referencesexploitation of water reservoirs of the Dnistrovsky
dc.relation.referencescascade of HPP and PSPP at the NPR 77.10 m of
dc.relation.referencesthe buffer water reservoir. 732-39-Т48. 106 p. (In
dc.relation.referencesUkrainian).
dc.relation.referencesVMF Data Server; editing status 2020-12-14;
dc.relation.referencesre3data.org – Registry of Research Data
dc.relation.referencesRepositories. http://doi.org/10.17616/R3RD2H.
dc.relation.referencesYavaşoğlu, H. H., Kalkan, Y., Tiryakioğlu, İ., Yigit,
dc.relation.referencesC. O., Özbey, V., Alkan, M. N., Bilgi S. & Alkan,
dc.relation.referencesR. M. (2018). Monitoring the deformation and
dc.relation.referencesstrain analysis on the Ataturk Dam, Turkey.
dc.relation.referencesGeomatics, Natural Hazards and Risk, 9(1), 94–107. DOI: 10.1080/19475705.2017.1411400.
dc.relation.referencesYue, C., Dang, Y., Xu, C., Gu, S., & Dai, H. (2020).
dc.relation.referencesEffects and Correction of Atmospheric Pressure
dc.relation.referencesLoading Deformation on GNSS Reference
dc.relation.referencesStations in Mainland China. Mathematical
dc.relation.referencesProblems in Engineering, 2020. https://doi.org/10.1155/2020/4013150.
dc.relation.referencesenBarzaghi, R., Cazzaniga, N. E., De Gaetani, C. I.,
dc.relation.referencesenPinto, L., & Tornatore, V. (2018). Estimating
dc.relation.referencesenand comparing dam deformation using classical
dc.relation.referencesenand GNSS techniques. Sensors, 18(3), 756.
dc.relation.referencesenhttps://doi.org/10.3390/s18030756
dc.relation.referencesenBehr, J. A., Hudnut, K. W., & King, N. E. (1998,
dc.relation.referencesenSeptember). Monitoring structural deformation at
dc.relation.referencesenPacoima dam, California using continuous GPS.
dc.relation.referencesenIn Proceedings of the 11th International Technical
dc.relation.referencesenMeeting of the Satellite Division of the Institute of
dc.relation.referencesenNavigation (ION GPS 1998) (pp. 59–68).
dc.relation.referencesenBisovetsky, Yu., Tretyak, K., and Shchuchik, E.
dc.relation.referencesen(2011). Automation of geodetic observations of
dc.relation.referencesenhydraulic structures of "Ukrhydroenergo"
dc.relation.referencesenhydroelectric power stations. Hydropower of
dc.relation.referencesenUkraine, 2, 45–51. (In Ukrainian)
dc.relation.referencesenBrusak, I., & Tretyak, K. (2020, December). About
dc.relation.referencesenthe phenomenon of subsidence in continental
dc.relation.referencesenEurope in December 2019 based on the GNSS
dc.relation.referencesenstations data. In International Conference
dc.relation.referencesenof Young Professionals "GeoTerrace-2020"
dc.relation.referencesen(Vol. 2020, No. 1, pp. 1–5). European Association
dc.relation.referencesenof Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20205717.
dc.relation.referencesenBrusak, I., & Tretyak, K. (2021, October). On the
dc.relation.referencesenimpact of non-tidal atmospheric loading on the
dc.relation.referencesenGNSS stations of regional networks and
dc.relation.referencesenengineering facilities. In International Conference
dc.relation.referencesenof Young Professionals "GeoTerrace-2021".
dc.relation.referencesenEuropean Association of Geoscientists &
dc.relation.referencesenEngineers.
dc.relation.referencesenBubniak, A. M., Bubniak, I. M., & Zyhar, A. I. (2020,
dc.relation.referencesenMay). Lineaments analysis of the Dnister area
dc.relation.referencesen(between Bakota and Novodnistrovsk). In
dc.relation.referencesenGeoinformatics: Theoretical and Applied Aspects.
dc.relation.referencesen(Vol. 2020, No. 1, pp. 1–4). European Association
dc.relation.referencesenof Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2020geo110.
dc.relation.referencesenDach, R., Böhm, J., Lutz, S., Steigenberger, P., &
dc.relation.referencesenBeutler, G. (2011). Evaluation of the impact of
dc.relation.referencesenatmospheric pressure loading modeling on GNSS
dc.relation.referencesendata analysis. Journal of geodesy, 85(2), 75–91.
dc.relation.referencesenhttps://doi.org/10.1007/s00190-010-0417-z.
dc.relation.referencesenDach, R., Lutz, S., Walser, P., & Fridez, P. (2015).
dc.relation.referencesenBernese GNSS software version 5.2.
dc.relation.referencesenDardanelli, G., La Loggia, G., Perfetti, N., Capodici, F.,
dc.relation.referencesenPuccio, L., & Maltese, A. (2014, October).
dc.relation.referencesenMonitoring displacements of an earthen dam using
dc.relation.referencesenGNSS and remote sensing. In Remote Sensing for
dc.relation.referencesenAgriculture, Ecosystems, and Hydrology XVI
dc.relation.referencesen(Vol. 9239, p. 923–928). International Society for
dc.relation.referencesenOptics and Photonics. https://doi.org/10.1117/12.2071222
dc.relation.referencesenESMGFZ; Earth System Modelling at GFZ. Online
dc.relation.referencesenAccess: http://esmdata.gfz-potsdam.de.
dc.relation.referencesenGeological map of Ukraine (2008) in scale 1: 200 000. Volyn-Podilsky series, M-35-XXVIII (Bar),
dc.relation.referencesenM35-XXXIV (Mohyliv-Podilsky). Explanatory
dc.relation.referencesennote (In Ukrainian).
dc.relation.referencesenGlomsda, M., Bloßfeld, M., Gerstl, M., Kwak, Y.,
dc.relation.referencesenSeitz, M., Angermann, D., & Seitz, F. (2019).
dc.relation.referencesenImpact of non-tidal loading in VLBI analysis. In 24th Meeting of the European VLBI Group for
dc.relation.referencesenGeodesy and Astrometry.
dc.relation.referencesenKalinnikov, V., Ustinov, A., & Kosarev, N. (2020).
dc.relation.referencesenImpact of atmospheric loadings on the results of
dc.relation.referencesenGNSS monitoring of the main building of
dc.relation.referencesenZagorskaya PSPP-2 by PPP method. Vestnik
dc.relation.referencesenSGUGiT (Sibirskogo gosudarstvennogo universiteta
dc.relation.referencesengeosistem i tekhnologiy), 25(3), 34–41 (In
dc.relation.referencesenRussian). DOI: 10.33764/2411-1759-2020-25-3-34-41.
dc.relation.referencesenMémin, A., Boy, J. P., & Santamaria-Gomez, A.
dc.relation.referencesen(2020). Correcting GPS measurements for nontidal
dc.relation.referencesenloading. GPS Solutions, 24(2), 1–13.
dc.relation.referencesenhttps://doi.org/10.1007/s10291-020-0959-3.
dc.relation.referencesenMohylnyi, S., Sholomitskyi, A., Shmorhun E.,
dc.relation.referencesenPryharov V. (2010) Automated system of geodetic
dc.relation.referencesenmonitoring. Modern Achievements in Geodetic
dc.relation.referencesenScience and Industry, 19, 193–197 (in Ukrainian).
dc.relation.referencesenPetrov, L. (2015). The international mass loading
dc.relation.referencesenservice. In REFAG 2014 (pp. 79–83). Springer,
dc.relation.referencesenCham. https://doi.org/10.1007/1345_2015_218
dc.relation.referencesenPetrov, L., & Boy, J. P. (2003). Study of the
dc.relation.referencesenatmospheric pressure loading signal in VLBI
dc.relation.referencesenobservations, submitted to J. Geophys. Res. DOI: 10.1029/2003JB002500.
dc.relation.referencesenRodrigues, E. P. (2007). Estimation of crustal vertical
dc.relation.referencesenmovements due to atmospheric loading effects
dc.relation.referencesenby GPS observations. Revista Brasileira de
dc.relation.referencesenGeofísica, 25, 45–50. https://doi.org/10.1590/S0102-261X2007000100004.
dc.relation.referencesenSarnavski, V., Ovsiannikov, M., (2005) Tectonic
dc.relation.referencesenstructure and geodynamic mode ofrock masses in
dc.relation.referencesenthe zone of interaction with hydromechanical
dc.relation.referencesenstructures of HPP and PSPP (on the example of
dc.relation.referencesenthe Dnister complex hydro unit), Modern Achv.
dc.relation.referencesengeodetic Sci. Prod., 2, 193–206 (in Ukrainian).
dc.relation.referencesenSavchyn, I., & Pronyshyn, R. (2020). Differentiation
dc.relation.referencesenof recent local geodynamic and seismic processes
dc.relation.referencesenof technogenic-loaded territories based on the
dc.relation.referencesenexample of Dnister Hydro Power Complex
dc.relation.referencesen(Ukraine). Geodesy and Geodynamics, 11 (5), 391–400.
dc.relation.referencesenTregoning, P., & van Dam, T. (2005). Atmospheric
dc.relation.referencesenpressure loading corrections applied to GPS
dc.relation.referencesendata at the observation level. Geophysical
dc.relation.referencesenResearch Letters, 32(22). https://doi.org/10.1029/ 2005GL024104.
dc.relation.referencesenTregoning, P., & Watson, C. (2009). Atmospheric
dc.relation.referenceseneffects and spurious signals in GPS analyses.
dc.relation.referencesenJournal of Geophysical Research: Solid Earth, 114(B9).
dc.relation.referencesenTretyak K., Periy S., Sidorov I., Babiy L. (2015)
dc.relation.referencesenComplex High Accuracy Satellite and Field
dc.relation.referencesenMeasurements of Horizontal and Vertical
dc.relation.referencesenDisplacements of Control Geodetic Network
dc.relation.referencesenon Dnister Hydroelectric Pumped Power
dc.relation.referencesenStation (HPPS). Geomatics and environmental
dc.relation.referencesenengineering, 9 (1), 83–96.
dc.relation.referencesenTretyak, K. & Brusak, I. (2021). Method for detecting
dc.relation.referencesenshort-term displacements of the Earth's surface by
dc.relation.referencesenstatistical analysis of GNSS time series. Geodesy,
dc.relation.referencesenCartography, and Aerial Photography, 93(1), 27–34. https://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesenTretyak, K., Cranenbroeck, J., Balan, A., Lompas, O.,
dc.relation.referencesenSavchyn, I. (2014) Posteriori optimization of
dc.relation.referencesenaccuracy and reliability of active geodetic
dc.relation.referencesenmonitoring network of the Dnister HPP. Geodesy,
dc.relation.referencesenCartography, and Aerial Photography, 79, 5–14.
dc.relation.referencesen(in Ukrainian)
dc.relation.referencesenTretyak, K., Korliatovych T., Brusak I., Smirnova O.
dc.relation.referencesen(2021a) Differentiation of kinematics of the
dc.relation.referencesenDnister HPP-1 dam (based on the data of
dc.relation.referencesenGNSS monitoring of spatial displacements).
dc.relation.referencesenModern Achv. geodetic Sci. Prod. 57–66 (in
dc.relation.referencesenUkrainian). DOI: www.doi.org/10.33841/1819-1339-2-42-57-66
dc.relation.referencesenTretyak, K., Korliatovych, T., Brusak, I., (2021b).
dc.relation.referencesenApplying the statistical method of GNSS time
dc.relation.referencesenseries analysis for the detection of vertical
dc.relation.referencesendisplacements of Dnister HPP-1 dam. In
dc.relation.referencesenInternational Conference of Young Professionals
dc.relation.referencesen"GeoTerrace-2021". European Association of
dc.relation.referencesenGeoscientists & Engineers.
dc.relation.referencesenTretyak, K., Savchyn, I., Zayats, O., Golubinka, Yu.,
dc.relation.referencesenLompas, O., & Bisovetsky, Yu. (2017).
dc.relation.referencesenInstallation and maintenance of automated
dc.relation.referencesensystems for control of spatial displacements of
dc.relation.referencesenengineering structures of Ukrainian hydroelectric
dc.relation.referencesenpower plants. Hydropower of Ukraine, (1–2), 33–41 (in Ukrainian).
dc.relation.referencesenTretyak, K., Zayats, O., Smirnova, O. (2016).
dc.relation.referencesenCreation of an automated system for geodetic
dc.relation.referencesenmonitoring of deformations. In VI International
dc.relation.referencesenScientific Conference "Geophysical technologies
dc.relation.referencesenfor forecasting and monitoring of the geological
dc.relation.referencesenenvironment", 272–275 (in Ukrainian).
dc.relation.referencesenUkrhydroproject PRJSC (2017). Rules for the
dc.relation.referencesenexploitation of water reservoirs of the Dnistrovsky
dc.relation.referencesencascade of HPP and PSPP at the NPR 77.10 m of
dc.relation.referencesenthe buffer water reservoir. 732-39-T48. 106 p. (In
dc.relation.referencesenUkrainian).
dc.relation.referencesenVMF Data Server; editing status 2020-12-14;
dc.relation.referencesenre3data.org – Registry of Research Data
dc.relation.referencesenRepositories. http://doi.org/10.17616/R3RD2H.
dc.relation.referencesenYavaşoğlu, H. H., Kalkan, Y., Tiryakioğlu, İ., Yigit,
dc.relation.referencesenC. O., Özbey, V., Alkan, M. N., Bilgi S. & Alkan,
dc.relation.referencesenR. M. (2018). Monitoring the deformation and
dc.relation.referencesenstrain analysis on the Ataturk Dam, Turkey.
dc.relation.referencesenGeomatics, Natural Hazards and Risk, 9(1), 94–107. DOI: 10.1080/19475705.2017.1411400.
dc.relation.referencesenYue, C., Dang, Y., Xu, C., Gu, S., & Dai, H. (2020).
dc.relation.referencesenEffects and Correction of Atmospheric Pressure
dc.relation.referencesenLoading Deformation on GNSS Reference
dc.relation.referencesenStations in Mainland China. Mathematical
dc.relation.referencesenProblems in Engineering, 2020. https://doi.org/10.1155/2020/4013150.
dc.relation.urihttps://doi.org/10.3390/s18030756
dc.relation.urihttps://doi.org/10.3997/2214-4609.20205717
dc.relation.urihttps://doi.org/10.3997/2214-4609.2020geo110
dc.relation.urihttps://doi.org/10.1007/s00190-010-0417-z
dc.relation.urihttps://doi.org/10.1117/12.2071222
dc.relation.urihttp://esmdata.gfz-potsdam.de
dc.relation.urihttps://doi.org/10.1007/s10291-020-0959-3
dc.relation.urihttps://doi.org/10.1007/1345_2015_218
dc.relation.urihttps://doi.org/10.1590/S0102-261X2007000100004
dc.relation.urihttps://doi.org/10.1029/
dc.relation.urihttps://doi.org/10.23939/istcgcap2021.93.027
dc.relation.urihttp://doi.org/10.17616/R3RD2H
dc.relation.urihttps://doi.org/10.1155/2020/4013150
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2021
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2021
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Tretyak K., Brusak I., Bubniak I., Zablotskyi F.
dc.subjectчасові ГНСС-ряди
dc.subjectвертикальні деформації
dc.subjectнеприпливне атмосферне навантаження
dc.subjectДністровська ГЕС-1
dc.subjectGNSS time series
dc.subjectvertical deformations
dc.subjectnon-tidal atmospheric loading
dc.subjectthe Dnister HPP-1
dc.subject.udc528.482
dc.subject.udc629.783
dc.titleImpact of non-tidal atmospheric loading on civil engineering structures
dc.title.alternativeВплив неприпливного атмосферного навантаження на великі інженерні споруди
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021n2_31__Tretyak_K-Impact_of_non_tidal_atmospheric_16-28.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021n2_31__Tretyak_K-Impact_of_non_tidal_atmospheric_16-28__COVER.png
Size:
475.85 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: