Means and Methods of Collecting Indicators for Energy Supply Companies

dc.citation.epage145
dc.citation.issue2
dc.citation.journalTitleДосягнення у кіберфізичних системах
dc.citation.spage140
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLublin University of Technology
dc.contributor.authorFedak, Pavlo
dc.contributor.authorKochan, Roman
dc.contributor.authorTomiło, Paweł
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-06T08:48:14Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThis study provides a comprehensive overview of the various means and methods employed in gathering data, emphasizing the need for advanced technologies in the face of increasing energy demands and evolving regulatory environments. A thorough comparative analysis focuses on several key aspects, including technologycomparison, data accuracy and reliability, real-time data collection capabilities, cost effectiveness, scalability, and flexibility, consumer interaction, and feedback mechanisms. Particular attention has been given to the security and confidentiality of data, as well as the environmental implications. The analysis extends to explore hardware and technological advancements in the industry, comparing traditional systems with modern automated and digital solutions, such as smart meters and integrated data management platforms.
dc.format.extent140-145
dc.format.pages6
dc.identifier.citationFedak P. Means and Methods of Collecting Indicators for Energy Supply Companies / Pavlo Fedak, Roman Kochan, Paweł Tomiło // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 140–145.
dc.identifier.citationenFedak P. Means and Methods of Collecting Indicators for Energy Supply Companies / Pavlo Fedak, Roman Kochan, Paweł Tomiło // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 140–145.
dc.identifier.doidoi.org/10.23939/acps2024.02.140
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117388
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кіберфізичних системах, 2 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (9), 2024
dc.relation.references[1] Vazhenina, L. V., Magaril, E., &Mayburov, I. (2023). Digital management of resource efficiency of fuel and energy companies in a circular economy. Energies, 16(8), 3498. DOI: https://doi.org/10.3390/en16083498.
dc.relation.references[2] Strezoski, L., Padullaparti, H. V., Ding, F., &Baggu, M. (2022). Integration of utility distributed energy resource management system and aggregators for evolving distribution system operators. Journal of Modern Power Systems and Clean Energy, 10(2), 277–285. DOI: https://doi.org/10.35833/mpce.2021.000667.
dc.relation.references[3] Alahmed, A., & Tong, L. (2022). Integrating distributed energy resources. Energy Informatics Review, 13–31. DOI: https://doi.org/10.1145/3555006.3555008.
dc.relation.references[4] Poroshenko, P. (2023). The law of Ukraine on housing and communal services [Electronic resource]. Verkhovna Rada. Available: https://zakon.rada.gov.ua/laws/show/2189-19#Text.
dc.relation.references[5] Massaro, A., &Starace, G. (2022). Advanced and complex energy systems monitoring and control: A review on available technologies and their application criteria. Sensors, 22(13), 4929. DOI: https://doi.org/10.3390/s22134929.
dc.relation.references[6] Ullah, Z., Wang, S., Wu, G., Xiao, M., Lai, J., &Elkadeem, M. R. (2022). Advanced energy management strategy for microgrid using real-time monitoring interface. Journal of Energy Storage, 52, 104814. DOI: https://doi.org/10.1016/j.est.2022.104814.
dc.relation.references[7] Selvam, P., Ramakrishnaprabu, G., Senthilkumar, K., Sathish, R., Devarajan, R., &Loganathan, P. (2022). Intrusive energy management with advanced smart metering and monitoring using IoT. In 4th International Conference on Inventive Research in Computing Applications (ICIRCA), 1–6. DOI: https://doi.org/10.1109/icirca54612.2022.9985661.
dc.relation.references[8] Central Drug Research Institute (2022). Energy management and monitoring systems, 171–185. DOI: https://doi.org/10.1201/9781003157137-7.
dc.relation.references[9] Zhong, X., Jiang, Y. W., Hou, K., Cai, W., Yin, H., Liu, J., & Wang, Q. S. (2021). Design and application of energy management integrated monitoring system for energy storage power station. Earth and Environmental Science, 701(1), 12052. DOI: https://doi.org/10.1088/1755-1315/701/1/012052.
dc.relation.references[10] Ajiboye, P. O., Agyekum, K. O. B. O., &Frimpong, E. A. (2024). Privacy and security of advanced metering infrastructure (AMI) data and network: A comprehensive review. Journal of Engineering Applied Science, 71, 91. DOI: https://doi.org/10.1186/s44147-024-00422-w.
dc.relation.references[11] Mary, J. S. N. (2022). Design of digital meters for industries using data acquisition system. IOP Conference Series: Materials Science and Engineering, 1258(1), 012047. DOI: https://doi.org/10.1088/1757-899x/1258/1/012047.
dc.relation.references[12] Li, Y., Xiao, T. C., Wang, J., & Ding, Z. (2022). Comprehensive energy metering collection and detection management by computer network technology. In IEEE International Conference on Digitalization & Smart City Applications (ICDSCA), 375–379. DOI: https://doi.org/10.1109/ICDSCA56264.2022.9987908.
dc.relation.references[13] Mengmeng, Z., Shaolei, Z., Zhaolei, H., Min, C., Qiang, L., Hansong, T., Hui, Y., &Honglin, W. (2016). Metering accuracy simulation test system of digital electric energy meter.
dc.relation.references[14] Verma, G., & Prakash, S. (2020). A comparative study based on different energy saving mechanisms based on green internet of things (GIoT). In IEEE International Conference on Recent Innovations in Telecommunication and Electronics (ICRITO) DOI: https://doi.org/10.1109/ICRITO48877.2020.9197848.
dc.relation.references[15] Sanchana, R., Kumar, D., Raj, M., & Umar, M. (2022). Automatic energy meter using IoT. EPRA International Journal of Research & Development, 168–173. DOI: https://doi.org/10.36713/epra11084.
dc.relation.references[16] Gannavaram, T. K., & Reddy, G. R. (2021). IoT based electricity energy meter. Social Science Research Network. DOI: https://doi.org/10.2139/SSRN.3875420.
dc.relation.references[17] Kumari, M., Yadav, K. B., Priyadarshi, A., &Rathore, V. (2022). Reliability indices calculation of advanced metering distribution system. In Lecture Notes in Electrical Engineering, 333–341. DOI: https://doi.org/10.1007/978-981-19-0193-5_28.
dc.relation.references[18] Su, M., Jiao, X., Li, J., Wu, S., & Wu, T. (2021). Accuracy and reliability analysis of pipe irrigation metering device for sandy water source. Water, 13(7), 947. DOI: https://doi.org/10.3390/w13070947.
dc.relation.references[19] Ding Yong., Luo Qing., LyuJie., Liu Xue., Yan Xue., Wang Xiaowei. (2019). Real-time dynamic energy management and control system based on building energy consumption data.
dc.relation.references[20] Jalali, M., &Alizadeh-Mousavi, O. (2022). Application of real-time distribution grid monitoring for grid forecasting and control considering incomplete information of resources behind-the-meter. Open Access Journal of Power and Energy, 9, 308–318. DOI: https://doi.org/10.1109/OAJPE.2022.3195755.
dc.relation.references[21] Goeller, T., Wenninger, M., & Schmidt, J. (2018). Towards cost-effective utility business models: Selecting a communication architecture for the rollout of new smart energy services, 231–237. DOI: https://doi.org/10.5220/0006759202310237.
dc.relation.references[22] Lee, J., Choi, W., & Kim, J. (2021). A cost-effective CNN-LSTM-based solution for predicting faulty remote water meter reading devices in AMI systems. Sensors, 21(18), 6229. DOI: https://doi.org/10.3390/S21186229.
dc.relation.references[23] Mathieu, S., de Villena, M., Millan, M., Vermeulen, E., & Ernst, D. (2019). Harnessing the flexibility of energy management systems: A retailer perspective. Proceedings of PowerTech. DOI: https://doi.org/10.1109/PTC.2019.8810813.
dc.relation.references[24] Avancini, D. B., Martins, S. G. B., Rabelo, R. A. L., Solic, P., & Rodrigues, J. J. P. C. (2018). A flexible IoT energy monitoring solution. In 3rd International Conference on Smart and Sustainable Technologies (SpliTech), 1–6. DOI: https://doi.org/10.1109/BigData.2018.8622154.
dc.relation.references[25] Anwar, S., Ahmad, T., &Wahab, F. E. (2021). Energy management in domestic household to reduce monthly bill through feedback. International Journal of Engineering Works, 8(4), 138–146. DOI: https://doi.org/10.34259/ijew.21.804138146.
dc.relation.references[26] Herrmann, M. R., Costanza, E., & Brumby, D. P. (2021). Exploring domestic energy consumption feedback through interactive annotation. Energy Efficiency, 90. DOI: https://doi.org/10.1007/s12053-021-09999-0.
dc.relation.references[27] Alrizq, M., de Doncker, E., & Fong, A. (2019). Changing energy consumption patterns based on multi-agent human behavior modeling for analyzing the effects of feedback techniques. Power and Energy Conference at Illinois (PECI). DOI: https://doi.org/10.1109/PECI.2019.8698779.
dc.relation.references[28] Abdalzaher, M. S., Fouda, M. M., &Ibrahem, M. I. (2022). Data privacy preservation and security in smart metering systems. Energies, 15(19), 7419. DOI: https://doi.org/10.3390/en15197419.
dc.relation.references[29] Ağirman, E. (2023). Security aspects of smart meter infrastructures. In Lecture Notes in Energy, 77–154. DOI: https://doi.org/10.1007/978-3-031-27556-2_5.
dc.relation.references[30] Stefan, M., Lopez, J. G., & Olsen, R. L. (2018). Exploring the potential of modern advanced metering infrastructure in low-voltage grid monitoring systems. In IEEE International Conference on Big Data (Big Data), 3543–3548. DOI: https://doi.org/10.1109/BigData.2018.8622154.
dc.relation.referencesen[1] Vazhenina, L. V., Magaril, E., &Mayburov, I. (2023). Digital management of resource efficiency of fuel and energy companies in a circular economy. Energies, 16(8), 3498. DOI: https://doi.org/10.3390/en16083498.
dc.relation.referencesen[2] Strezoski, L., Padullaparti, H. V., Ding, F., &Baggu, M. (2022). Integration of utility distributed energy resource management system and aggregators for evolving distribution system operators. Journal of Modern Power Systems and Clean Energy, 10(2), 277–285. DOI: https://doi.org/10.35833/mpce.2021.000667.
dc.relation.referencesen[3] Alahmed, A., & Tong, L. (2022). Integrating distributed energy resources. Energy Informatics Review, 13–31. DOI: https://doi.org/10.1145/3555006.3555008.
dc.relation.referencesen[4] Poroshenko, P. (2023). The law of Ukraine on housing and communal services [Electronic resource]. Verkhovna Rada. Available: https://zakon.rada.gov.ua/laws/show/2189-19#Text.
dc.relation.referencesen[5] Massaro, A., &Starace, G. (2022). Advanced and complex energy systems monitoring and control: A review on available technologies and their application criteria. Sensors, 22(13), 4929. DOI: https://doi.org/10.3390/s22134929.
dc.relation.referencesen[6] Ullah, Z., Wang, S., Wu, G., Xiao, M., Lai, J., &Elkadeem, M. R. (2022). Advanced energy management strategy for microgrid using real-time monitoring interface. Journal of Energy Storage, 52, 104814. DOI: https://doi.org/10.1016/j.est.2022.104814.
dc.relation.referencesen[7] Selvam, P., Ramakrishnaprabu, G., Senthilkumar, K., Sathish, R., Devarajan, R., &Loganathan, P. (2022). Intrusive energy management with advanced smart metering and monitoring using IoT. In 4th International Conference on Inventive Research in Computing Applications (ICIRCA), 1–6. DOI: https://doi.org/10.1109/icirca54612.2022.9985661.
dc.relation.referencesen[8] Central Drug Research Institute (2022). Energy management and monitoring systems, 171–185. DOI: https://doi.org/10.1201/9781003157137-7.
dc.relation.referencesen[9] Zhong, X., Jiang, Y. W., Hou, K., Cai, W., Yin, H., Liu, J., & Wang, Q. S. (2021). Design and application of energy management integrated monitoring system for energy storage power station. Earth and Environmental Science, 701(1), 12052. DOI: https://doi.org/10.1088/1755-1315/701/1/012052.
dc.relation.referencesen[10] Ajiboye, P. O., Agyekum, K. O. B. O., &Frimpong, E. A. (2024). Privacy and security of advanced metering infrastructure (AMI) data and network: A comprehensive review. Journal of Engineering Applied Science, 71, 91. DOI: https://doi.org/10.1186/s44147-024-00422-w.
dc.relation.referencesen[11] Mary, J. S. N. (2022). Design of digital meters for industries using data acquisition system. IOP Conference Series: Materials Science and Engineering, 1258(1), 012047. DOI: https://doi.org/10.1088/1757-899x/1258/1/012047.
dc.relation.referencesen[12] Li, Y., Xiao, T. C., Wang, J., & Ding, Z. (2022). Comprehensive energy metering collection and detection management by computer network technology. In IEEE International Conference on Digitalization & Smart City Applications (ICDSCA), 375–379. DOI: https://doi.org/10.1109/ICDSCA56264.2022.9987908.
dc.relation.referencesen[13] Mengmeng, Z., Shaolei, Z., Zhaolei, H., Min, C., Qiang, L., Hansong, T., Hui, Y., &Honglin, W. (2016). Metering accuracy simulation test system of digital electric energy meter.
dc.relation.referencesen[14] Verma, G., & Prakash, S. (2020). A comparative study based on different energy saving mechanisms based on green internet of things (GIoT). In IEEE International Conference on Recent Innovations in Telecommunication and Electronics (ICRITO) DOI: https://doi.org/10.1109/ICRITO48877.2020.9197848.
dc.relation.referencesen[15] Sanchana, R., Kumar, D., Raj, M., & Umar, M. (2022). Automatic energy meter using IoT. EPRA International Journal of Research & Development, 168–173. DOI: https://doi.org/10.36713/epra11084.
dc.relation.referencesen[16] Gannavaram, T. K., & Reddy, G. R. (2021). IoT based electricity energy meter. Social Science Research Network. DOI: https://doi.org/10.2139/SSRN.3875420.
dc.relation.referencesen[17] Kumari, M., Yadav, K. B., Priyadarshi, A., &Rathore, V. (2022). Reliability indices calculation of advanced metering distribution system. In Lecture Notes in Electrical Engineering, 333–341. DOI: https://doi.org/10.1007/978-981-19-0193-5_28.
dc.relation.referencesen[18] Su, M., Jiao, X., Li, J., Wu, S., & Wu, T. (2021). Accuracy and reliability analysis of pipe irrigation metering device for sandy water source. Water, 13(7), 947. DOI: https://doi.org/10.3390/w13070947.
dc.relation.referencesen[19] Ding Yong., Luo Qing., LyuJie., Liu Xue., Yan Xue., Wang Xiaowei. (2019). Real-time dynamic energy management and control system based on building energy consumption data.
dc.relation.referencesen[20] Jalali, M., &Alizadeh-Mousavi, O. (2022). Application of real-time distribution grid monitoring for grid forecasting and control considering incomplete information of resources behind-the-meter. Open Access Journal of Power and Energy, 9, 308–318. DOI: https://doi.org/10.1109/OAJPE.2022.3195755.
dc.relation.referencesen[21] Goeller, T., Wenninger, M., & Schmidt, J. (2018). Towards cost-effective utility business models: Selecting a communication architecture for the rollout of new smart energy services, 231–237. DOI: https://doi.org/10.5220/0006759202310237.
dc.relation.referencesen[22] Lee, J., Choi, W., & Kim, J. (2021). A cost-effective CNN-LSTM-based solution for predicting faulty remote water meter reading devices in AMI systems. Sensors, 21(18), 6229. DOI: https://doi.org/10.3390/S21186229.
dc.relation.referencesen[23] Mathieu, S., de Villena, M., Millan, M., Vermeulen, E., & Ernst, D. (2019). Harnessing the flexibility of energy management systems: A retailer perspective. Proceedings of PowerTech. DOI: https://doi.org/10.1109/PTC.2019.8810813.
dc.relation.referencesen[24] Avancini, D. B., Martins, S. G. B., Rabelo, R. A. L., Solic, P., & Rodrigues, J. J. P. C. (2018). A flexible IoT energy monitoring solution. In 3rd International Conference on Smart and Sustainable Technologies (SpliTech), 1–6. DOI: https://doi.org/10.1109/BigData.2018.8622154.
dc.relation.referencesen[25] Anwar, S., Ahmad, T., &Wahab, F. E. (2021). Energy management in domestic household to reduce monthly bill through feedback. International Journal of Engineering Works, 8(4), 138–146. DOI: https://doi.org/10.34259/ijew.21.804138146.
dc.relation.referencesen[26] Herrmann, M. R., Costanza, E., & Brumby, D. P. (2021). Exploring domestic energy consumption feedback through interactive annotation. Energy Efficiency, 90. DOI: https://doi.org/10.1007/s12053-021-09999-0.
dc.relation.referencesen[27] Alrizq, M., de Doncker, E., & Fong, A. (2019). Changing energy consumption patterns based on multi-agent human behavior modeling for analyzing the effects of feedback techniques. Power and Energy Conference at Illinois (PECI). DOI: https://doi.org/10.1109/PECI.2019.8698779.
dc.relation.referencesen[28] Abdalzaher, M. S., Fouda, M. M., &Ibrahem, M. I. (2022). Data privacy preservation and security in smart metering systems. Energies, 15(19), 7419. DOI: https://doi.org/10.3390/en15197419.
dc.relation.referencesen[29] Ağirman, E. (2023). Security aspects of smart meter infrastructures. In Lecture Notes in Energy, 77–154. DOI: https://doi.org/10.1007/978-3-031-27556-2_5.
dc.relation.referencesen[30] Stefan, M., Lopez, J. G., & Olsen, R. L. (2018). Exploring the potential of modern advanced metering infrastructure in low-voltage grid monitoring systems. In IEEE International Conference on Big Data (Big Data), 3543–3548. DOI: https://doi.org/10.1109/BigData.2018.8622154.
dc.relation.urihttps://doi.org/10.3390/en16083498
dc.relation.urihttps://doi.org/10.35833/mpce.2021.000667
dc.relation.urihttps://doi.org/10.1145/3555006.3555008
dc.relation.urihttps://zakon.rada.gov.ua/laws/show/2189-19#Text
dc.relation.urihttps://doi.org/10.3390/s22134929
dc.relation.urihttps://doi.org/10.1016/j.est.2022.104814
dc.relation.urihttps://doi.org/10.1109/icirca54612.2022.9985661
dc.relation.urihttps://doi.org/10.1201/9781003157137-7
dc.relation.urihttps://doi.org/10.1088/1755-1315/701/1/012052
dc.relation.urihttps://doi.org/10.1186/s44147-024-00422-w
dc.relation.urihttps://doi.org/10.1088/1757-899x/1258/1/012047
dc.relation.urihttps://doi.org/10.1109/ICDSCA56264.2022.9987908
dc.relation.urihttps://doi.org/10.1109/ICRITO48877.2020.9197848
dc.relation.urihttps://doi.org/10.36713/epra11084
dc.relation.urihttps://doi.org/10.2139/SSRN.3875420
dc.relation.urihttps://doi.org/10.1007/978-981-19-0193-5_28
dc.relation.urihttps://doi.org/10.3390/w13070947
dc.relation.urihttps://doi.org/10.1109/OAJPE.2022.3195755
dc.relation.urihttps://doi.org/10.5220/0006759202310237
dc.relation.urihttps://doi.org/10.3390/S21186229
dc.relation.urihttps://doi.org/10.1109/PTC.2019.8810813
dc.relation.urihttps://doi.org/10.1109/BigData.2018.8622154
dc.relation.urihttps://doi.org/10.34259/ijew.21.804138146
dc.relation.urihttps://doi.org/10.1007/s12053-021-09999-0
dc.relation.urihttps://doi.org/10.1109/PECI.2019.8698779
dc.relation.urihttps://doi.org/10.3390/en15197419
dc.relation.urihttps://doi.org/10.1007/978-3-031-27556-2_5
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Fedak P., Kochan R., Tomiło P., 2024
dc.subjectEnergy Management
dc.subjectSmart metering
dc.subjectRealtime data collection
dc.subjectIoT
dc.subjectAMI
dc.subjectAMR
dc.titleMeans and Methods of Collecting Indicators for Energy Supply Companies
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n2_Fedak_P-Means_and_Methods_of_Collecting_140-145.pdf
Size:
368.85 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n2_Fedak_P-Means_and_Methods_of_Collecting_140-145__COVER.png
Size:
570.29 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: