Applicability assessment of the vickers indentation for determining the fracture toughness of yttria-stabilized zirconia

dc.citation.epage59
dc.citation.issue3
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage48
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationKrakow Institute of Technology
dc.contributor.authorVavrukh, Valentyna
dc.contributor.authorKlimczyk, Piotr
dc.contributor.authorPriakhin, Volodymyr
dc.contributor.authorPetryk, Vitalii
dc.contributor.authorMomot, Kinga
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T07:37:00Z
dc.date.available2024-04-03T07:37:00Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractCrack growth resistance of ZrO2-(3-8) mol% Y2O3 ceramics was investigated. Young's modulus by the ultrasonic flaw detection method were determined. Vickers hardness and parameters of cracks after Vickers indentation were obtained. Based on the Young's modulus values, Vickers hardness, and parameters of cracks, the fracture toughness of the investigated ceramics was calculated using 9 different equations of the Vickers indentation method. A comparative analysis of the calculated fracture toughness values with those obtained by the single-edge notch beam method was carried out. It was found that choosing the optimal equation for calculating fracture toughness by the Vickers indentation method is quite difficult and requires comparison with the results of standardized tests. It was shown that to determine crack resistance characteristics of the yttria-stabilized zirconia ceramics, the use of only the Vickers indentation method without comparison with other methods of fracture mechanics is incorrect.
dc.format.extent48-59
dc.format.pages12
dc.identifier.citationApplicability assessment of the vickers indentation for determining the fracture toughness of yttria-stabilized zirconia / Valentyna Vavrukh, Piotr Klimczyk, Volodymyr Priakhin, Vitalii Petryk, Kinga Momot // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 48–59.
dc.identifier.citationenApplicability assessment of the vickers indentation for determining the fracture toughness of yttria-stabilized zirconia / Valentyna Vavrukh, Piotr Klimczyk, Volodymyr Priakhin, Vitalii Petryk, Kinga Momot // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 48–59.
dc.identifier.doidoi.org/10.23939/ujmems2023.03.048
dc.identifier.issn2411-8001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61640
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 3 (9), 2023
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 3 (9), 2023
dc.relation.references[1] A.-R. Alao, et al., "Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes", J. Mech. Behav. Biomed. Mater., vol. 65, pp.102-116, 2017. https://doi.org/10.1016/j.jmbbm.2016.08.021
dc.relation.references[2] E. E. Daou, "The zirconia ceramic: strengths and weaknesses", Open Dent. J., vol. 8, pp. 33-42, 2014. https://doi.org/10.2174/1874210601408010033
dc.relation.references[3] C. Gautam, et al., "Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications", Dalton Trans., vol. 45, pp. 19194-19215, 2016. https://doi.org/10.1039/C6DT03484E
dc.relation.references[4] Y. Zhu, et al., "3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties", Int. J. Nanomedicine, vol. 14, pp. 5977-5987, 2019. https://doi.org/10.2147/IJN.S202457
dc.relation.references[5] A. Okada, "Automotive and industrial applications of structural ceramics in Japan", J. Eur. Ceram. Soc., vol. 28, pp. 1097-1104, 2008. https://doi.org/10.1016/j.jeurceramsoc.2007.09.016
dc.relation.references[6] G. Pezzotti, "Bioceramics for hip joints: the physical chemistry viewpoint", Materials, vol. 7, pp. 4367-4410, 2014. https://doi.org/10.3390/ma7064367
dc.relation.references[7] T. Liu, et al., "Characterization of YSZ ceramic nanopowders synthesized at different temperatures via polyacrylamide gel method", J. Wuhan Univ. Technol.-Mater Sci Ed., vol. 35, pp. https://doi.org/10.1007/s11595-020-2289-2
dc.relation.references[8] D. Ćorić, et al., "Vickers indentation fracture toughness of Y-TZP dental ceramics", Int. J. Refract. Met. Hard Mater., vol. 64, pp. 14-19, 2017. doi:10.1016/j.ijrmhm.2016.12.016. https://doi.org/10.1016/j.ijrmhm.2016.12.016
dc.relation.references[9] I. Žmak, et al., "Hardness and indentation fracture toughness of slip cast alumina and alumina-zirconia ceramics", Materials, vol. 13, pp. 122, 2019. https://doi.org/10.3390/ma13010122
dc.relation.references[10] A. A.Madfa, et al., "Use of zirconia in dentistry: an overview", Open Biomater. J., vol. 5, pp. 1-9, 2014. https://doi.org/10.2174/1876502501405010001
dc.relation.references[11] J. Chevalier, et al., "The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends", J. Am. Ceram. Soc., vol. 92, pp. 1901-1920, 2009. https://doi.org/10.1111/j.1551-2916.2009.03278.x
dc.relation.references[12] C. Piconi, and S. Sprio, "Zirconia implants: is there a future?", Curr. Oral Health Rep.,vol. 5, pp. 186-193, 2018. doi:10.1007/s40496-018-0187-x. https://doi.org/10.1007/s40496-018-0187-x
dc.relation.references[13] C. Piconi, and A.A. Porporati, "Bioinert ceramics: zirconia and alumina", in Handbook of Bioceramics and Biocomposites; I. V. Antoniac, Ed. Springer International Publishing: Cham, pp. 1-25, 2015, ISBN 978-3-319-09230-0. https://doi.org/10.1007/978-3-319-09230-0_4-1
dc.relation.references[14] I. Denry, and J. Kelly, "State of the art of zirconia for dental applications", Dent. Mater.,vol. 24, pp. 299-307, 2008. https://doi.org/10.1016/j.dental.2007.05.007
dc.relation.references[15] A. Moradkhani, et al. "Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by vickers indentation test", J. Adv. Ceram.,vol. 2, pp. 87-102, 2013. https://doi.org/10.1007/s40145-013-0047-z
dc.relation.references[16] Q. Yao, et al. "Evaluations on ceramic fracture toughness measurement by edge chipping", Coatings, vol., pp. 1146, 2022. doi:10.3390/coatings12081146. https://doi.org/10.3390/coatings12081146
dc.relation.references[17] B. Roebuck, et al. "Palmqvist toughness for hard and brittle materials" in Measurement good practice guide. No. 9, 2008.
dc.relation.references[18] T. G. T. Nindhia, and T. Lube, "Single edge precrack v-notched beam (SEPVNB) fracture toughness testing on silicon nitride", Mater. Sci. Forum, vol. 962, pp. 205-209, 2019. https://doi.org/10.4028/www.scientific.net/MSF.962.205
dc.relation.references[19] H. Miyazaki, et al. "Comparison of fracture resistance as measured by the indentation fracture method and fracture toughness determined by the single-edge-precracked beam technique using silicon nitrides with different microstructures", J. Eur. Ceram. Soc., vol. 27, pp. 2347-2354, 2007. https://doi.org/10.1016/j.jeurceramsoc.2006.09.002
dc.relation.references[20] S. Begand, et al. "Fracture toughness of 3Y-TZP ceramic measured by the chevron-notch beam method: a round-robin study", Dent. Mater., vol. 38, pp. 1128-1139, 2022. https://doi.org/10.1016/j.dental.2022.05.001
dc.relation.references[21] J. J. Kruzic, et al. "Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues", J. Mech. Behav. Biomed. Mater., vol. 2, pp. 384-395, 2009. . https://doi.org/10.1016/j.jmbbm.2008.10.008
dc.relation.references[22] B. R. Lawn, and M. V. Swain, "Microfracture beneath point indentations in brittle solids", J. Mater. Sci., vol. 10, pp. 113-122, 1975. https://doi.org/10.1007/BF00541038
dc.relation.references[23] B. R. Lawn, and E. R. Fuller, "Equilibrium penny-like cracks in indentation fracture", J. Mater. Sci., vol. 10, pp. 2016-2024, 1975. https://doi.org/10.1007/BF00557479
dc.relation.references[24] A. G. Evans,.and E. A. Charles, "Fracture toughness determinations by indentation", J. Am. Ceram. Soc., vol. 59, pp. 371-372, 1976. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.references[25] K. Tanaka, "Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model", J. Mater. Sci., vol. 22, pp. 1501-1508, 1987. https://doi.org/10.1007/BF01233154
dc.relation.references[26] K. Niihara, et al. "Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios", J. Mater. Sci. Lett., vol. 1, pp. 13-16, 1982. https://doi.org/10.1007/BF00724706
dc.relation.references[27] K. Niihara, "A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics", J. Mater. Sci. Lett., vol. 2, pp. 221-223, 1983. https://doi.org/10.1007/BF00725625
dc.relation.references[28] G. R. Anstis, et al. "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements", J. Am. Ceram. Soc., vol. 64, pp. 533-538, 1981. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
dc.relation.references[29] B. R. Lawn, et al. "Elastic/plastic indentation damage in ceramics: the median/radial crack system", J. Am. Ceram. Soc., vol. 63, pp. 574-581, 1980. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
dc.relation.references[30] J. E. Blendell, The Origins of Internal Stresses in Polycrystalline Alumina and Their Effects on Mechanical Properties, Cambridge, 1979.
dc.relation.references[31] J. Lankford, "Indentation Microfracture in the Palmqvist Crack Regime: Implications for Fracture Toughness Evaluation by the Indentation Method", J. Mater. Sci. Lett., vol. 1, pp. 493-495, 1982. https://doi.org/10.1007/BF00721938
dc.relation.references[32] V. V. Kulyk, et al. "Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia", Arch. Mater. Sci. Eng., vol. 2, https://doi.org/10.5604/01.3001.0015.2625
dc.relation.references[33] V. Kulyk, et al. "The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia", Materials, vol. 15, pp. 2707, https://doi.org/10.3390/ma15082707
dc.relation.references[34] P. Klimczyk, et al. "Phase stability and mechanical properties of Al2O3-CBN composites prepared via spark plasma sintering", Diam. Relat. Mater., vol. 104, pp.107762, 2020. https://doi.org/10.1016/j.diamond.2020.107762
dc.relation.referencesen[1] A.-R. Alao, et al., "Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes", J. Mech. Behav. Biomed. Mater., vol. 65, pp.102-116, 2017. https://doi.org/10.1016/j.jmbbm.2016.08.021
dc.relation.referencesen[2] E. E. Daou, "The zirconia ceramic: strengths and weaknesses", Open Dent. J., vol. 8, pp. 33-42, 2014. https://doi.org/10.2174/1874210601408010033
dc.relation.referencesen[3] C. Gautam, et al., "Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications", Dalton Trans., vol. 45, pp. 19194-19215, 2016. https://doi.org/10.1039/P.6DT03484E
dc.relation.referencesen[4] Y. Zhu, et al., "3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties", Int. J. Nanomedicine, vol. 14, pp. 5977-5987, 2019. https://doi.org/10.2147/IJN.S202457
dc.relation.referencesen[5] A. Okada, "Automotive and industrial applications of structural ceramics in Japan", J. Eur. Ceram. Soc., vol. 28, pp. 1097-1104, 2008. https://doi.org/10.1016/j.jeurceramsoc.2007.09.016
dc.relation.referencesen[6] G. Pezzotti, "Bioceramics for hip joints: the physical chemistry viewpoint", Materials, vol. 7, pp. 4367-4410, 2014. https://doi.org/10.3390/ma7064367
dc.relation.referencesen[7] T. Liu, et al., "Characterization of YSZ ceramic nanopowders synthesized at different temperatures via polyacrylamide gel method", J. Wuhan Univ. Technol.-Mater Sci Ed., vol. 35, pp. https://doi.org/10.1007/s11595-020-2289-2
dc.relation.referencesen[8] D. Ćorić, et al., "Vickers indentation fracture toughness of Y-TZP dental ceramics", Int. J. Refract. Met. Hard Mater., vol. 64, pp. 14-19, 2017. doi:10.1016/j.ijrmhm.2016.12.016. https://doi.org/10.1016/j.ijrmhm.2016.12.016
dc.relation.referencesen[9] I. Žmak, et al., "Hardness and indentation fracture toughness of slip cast alumina and alumina-zirconia ceramics", Materials, vol. 13, pp. 122, 2019. https://doi.org/10.3390/ma13010122
dc.relation.referencesen[10] A. A.Madfa, et al., "Use of zirconia in dentistry: an overview", Open Biomater. J., vol. 5, pp. 1-9, 2014. https://doi.org/10.2174/1876502501405010001
dc.relation.referencesen[11] J. Chevalier, et al., "The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends", J. Am. Ceram. Soc., vol. 92, pp. 1901-1920, 2009. https://doi.org/10.1111/j.1551-2916.2009.03278.x
dc.relation.referencesen[12] C. Piconi, and S. Sprio, "Zirconia implants: is there a future?", Curr. Oral Health Rep.,vol. 5, pp. 186-193, 2018. doi:10.1007/s40496-018-0187-x. https://doi.org/10.1007/s40496-018-0187-x
dc.relation.referencesen[13] C. Piconi, and A.A. Porporati, "Bioinert ceramics: zirconia and alumina", in Handbook of Bioceramics and Biocomposites; I. V. Antoniac, Ed. Springer International Publishing: Cham, pp. 1-25, 2015, ISBN 978-3-319-09230-0. https://doi.org/10.1007/978-3-319-09230-0_4-1
dc.relation.referencesen[14] I. Denry, and J. Kelly, "State of the art of zirconia for dental applications", Dent. Mater.,vol. 24, pp. 299-307, 2008. https://doi.org/10.1016/j.dental.2007.05.007
dc.relation.referencesen[15] A. Moradkhani, et al. "Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by vickers indentation test", J. Adv. Ceram.,vol. 2, pp. 87-102, 2013. https://doi.org/10.1007/s40145-013-0047-z
dc.relation.referencesen[16] Q. Yao, et al. "Evaluations on ceramic fracture toughness measurement by edge chipping", Coatings, vol., pp. 1146, 2022. doi:10.3390/coatings12081146. https://doi.org/10.3390/coatings12081146
dc.relation.referencesen[17] B. Roebuck, et al. "Palmqvist toughness for hard and brittle materials" in Measurement good practice guide. No. 9, 2008.
dc.relation.referencesen[18] T. G. T. Nindhia, and T. Lube, "Single edge precrack v-notched beam (SEPVNB) fracture toughness testing on silicon nitride", Mater. Sci. Forum, vol. 962, pp. 205-209, 2019. https://doi.org/10.4028/www.scientific.net/MSF.962.205
dc.relation.referencesen[19] H. Miyazaki, et al. "Comparison of fracture resistance as measured by the indentation fracture method and fracture toughness determined by the single-edge-precracked beam technique using silicon nitrides with different microstructures", J. Eur. Ceram. Soc., vol. 27, pp. 2347-2354, 2007. https://doi.org/10.1016/j.jeurceramsoc.2006.09.002
dc.relation.referencesen[20] S. Begand, et al. "Fracture toughness of 3Y-TZP ceramic measured by the chevron-notch beam method: a round-robin study", Dent. Mater., vol. 38, pp. 1128-1139, 2022. https://doi.org/10.1016/j.dental.2022.05.001
dc.relation.referencesen[21] J. J. Kruzic, et al. "Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues", J. Mech. Behav. Biomed. Mater., vol. 2, pp. 384-395, 2009. . https://doi.org/10.1016/j.jmbbm.2008.10.008
dc.relation.referencesen[22] B. R. Lawn, and M. V. Swain, "Microfracture beneath point indentations in brittle solids", J. Mater. Sci., vol. 10, pp. 113-122, 1975. https://doi.org/10.1007/BF00541038
dc.relation.referencesen[23] B. R. Lawn, and E. R. Fuller, "Equilibrium penny-like cracks in indentation fracture", J. Mater. Sci., vol. 10, pp. 2016-2024, 1975. https://doi.org/10.1007/BF00557479
dc.relation.referencesen[24] A. G. Evans,.and E. A. Charles, "Fracture toughness determinations by indentation", J. Am. Ceram. Soc., vol. 59, pp. 371-372, 1976. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.referencesen[25] K. Tanaka, "Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model", J. Mater. Sci., vol. 22, pp. 1501-1508, 1987. https://doi.org/10.1007/BF01233154
dc.relation.referencesen[26] K. Niihara, et al. "Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios", J. Mater. Sci. Lett., vol. 1, pp. 13-16, 1982. https://doi.org/10.1007/BF00724706
dc.relation.referencesen[27] K. Niihara, "A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics", J. Mater. Sci. Lett., vol. 2, pp. 221-223, 1983. https://doi.org/10.1007/BF00725625
dc.relation.referencesen[28] G. R. Anstis, et al. "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements", J. Am. Ceram. Soc., vol. 64, pp. 533-538, 1981. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
dc.relation.referencesen[29] B. R. Lawn, et al. "Elastic/plastic indentation damage in ceramics: the median/radial crack system", J. Am. Ceram. Soc., vol. 63, pp. 574-581, 1980. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
dc.relation.referencesen[30] J. E. Blendell, The Origins of Internal Stresses in Polycrystalline Alumina and Their Effects on Mechanical Properties, Cambridge, 1979.
dc.relation.referencesen[31] J. Lankford, "Indentation Microfracture in the Palmqvist Crack Regime: Implications for Fracture Toughness Evaluation by the Indentation Method", J. Mater. Sci. Lett., vol. 1, pp. 493-495, 1982. https://doi.org/10.1007/BF00721938
dc.relation.referencesen[32] V. V. Kulyk, et al. "Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia", Arch. Mater. Sci. Eng., vol. 2, https://doi.org/10.5604/01.3001.0015.2625
dc.relation.referencesen[33] V. Kulyk, et al. "The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia", Materials, vol. 15, pp. 2707, https://doi.org/10.3390/ma15082707
dc.relation.referencesen[34] P. Klimczyk, et al. "Phase stability and mechanical properties of Al2O3-CBN composites prepared via spark plasma sintering", Diam. Relat. Mater., vol. 104, pp.107762, 2020. https://doi.org/10.1016/j.diamond.2020.107762
dc.relation.urihttps://doi.org/10.1016/j.jmbbm.2016.08.021
dc.relation.urihttps://doi.org/10.2174/1874210601408010033
dc.relation.urihttps://doi.org/10.1039/C6DT03484E
dc.relation.urihttps://doi.org/10.2147/IJN.S202457
dc.relation.urihttps://doi.org/10.1016/j.jeurceramsoc.2007.09.016
dc.relation.urihttps://doi.org/10.3390/ma7064367
dc.relation.urihttps://doi.org/10.1007/s11595-020-2289-2
dc.relation.urihttps://doi.org/10.1016/j.ijrmhm.2016.12.016
dc.relation.urihttps://doi.org/10.3390/ma13010122
dc.relation.urihttps://doi.org/10.2174/1876502501405010001
dc.relation.urihttps://doi.org/10.1111/j.1551-2916.2009.03278.x
dc.relation.urihttps://doi.org/10.1007/s40496-018-0187-x
dc.relation.urihttps://doi.org/10.1007/978-3-319-09230-0_4-1
dc.relation.urihttps://doi.org/10.1016/j.dental.2007.05.007
dc.relation.urihttps://doi.org/10.1007/s40145-013-0047-z
dc.relation.urihttps://doi.org/10.3390/coatings12081146
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.962.205
dc.relation.urihttps://doi.org/10.1016/j.jeurceramsoc.2006.09.002
dc.relation.urihttps://doi.org/10.1016/j.dental.2022.05.001
dc.relation.urihttps://doi.org/10.1016/j.jmbbm.2008.10.008
dc.relation.urihttps://doi.org/10.1007/BF00541038
dc.relation.urihttps://doi.org/10.1007/BF00557479
dc.relation.urihttps://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.urihttps://doi.org/10.1007/BF01233154
dc.relation.urihttps://doi.org/10.1007/BF00724706
dc.relation.urihttps://doi.org/10.1007/BF00725625
dc.relation.urihttps://doi.org/10.1111/j.1151-2916.1981.tb10320.x
dc.relation.urihttps://doi.org/10.1111/j.1151-2916.1980.tb10768.x
dc.relation.urihttps://doi.org/10.1007/BF00721938
dc.relation.urihttps://doi.org/10.5604/01.3001.0015.2625
dc.relation.urihttps://doi.org/10.3390/ma15082707
dc.relation.urihttps://doi.org/10.1016/j.diamond.2020.107762
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Vavrukh V., Klimczyk P., Priakhin V., Petryk V., Momot K., 2023
dc.subjectYSZ ceramics
dc.subjectVickers indentation
dc.subjectfracture toughness
dc.subjectYoung’s modulus
dc.subjectsintering
dc.titleApplicability assessment of the vickers indentation for determining the fracture toughness of yttria-stabilized zirconia
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v9n3_Vavrukh_V-Applicability_assessment_48-59.pdf
Size:
461.62 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v9n3_Vavrukh_V-Applicability_assessment_48-59__COVER.png
Size:
456.24 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: