Decoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview

dc.citation.epage37
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage29
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНауково-технологічний університет Адана Алпарслана Тюркеша
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationAdana Alparslan Türkeş Science and Technology University
dc.contributor.authorЗозуля, Г. І.
dc.contributor.authorШепіда, М. В.
dc.contributor.authorГюшлютен, Ч.
dc.contributor.authorКунтий, Орест Іванович
dc.contributor.authorZozulia, G. I.
dc.contributor.authorShepida, M. V.
dc.contributor.authorGüçlüten, Ç.
dc.contributor.authorKuntyi, O. I.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:30Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractРозглянуто ефективність методу гальванічного заміщення для декорування поруватої поверхні металевими наночастинками та наноструктурами. Показано, що залежно від функціонального призначення для модифікації гальванічним заміщенням переважно застосовують пінні, поруваті та дендритні металеві 3D субстрати. Зокрема це нікелеві та мідні субстрати, на які осаджують noble metals. Наведено особливості формування наноромірних осадів на поруватих мідній і нікелевій поверхнях залежно від структури останніх та умов гальванічного заміщення. Зазначено основні сфери їх застосування.
dc.description.abstractThe effectiveness of the galvanic replacement method for decorating a porous surface with metal nanoparticles and nanostructures is considered. It is shown that depending on the functional purpose, foam, porous, and dendritic metal 3D substrates are mainly used for modification by galvanic replacement. In particular, these are nickel and copper substrates on which noble metals are deposited. The peculiarities of the formation of nanosized deposits on porous copper and nickel surfaces depending on the structure of the latter and the conditions of galvanic substitution are given. The main areas of their application are specified.
dc.format.extent29-37
dc.format.pages9
dc.identifier.citationDecoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview / G. I. Zozulia, M. V. Shepida, Ç. Güçlüten, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 29–37.
dc.identifier.citationenDecoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview / G. I. Zozulia, M. V. Shepida, Ç. Güçlüten, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 29–37.
dc.identifier.doidoi.org/10.23939/ctas2023.02.029
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63682
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Hassan, I.U., Salim, H., Naikoo, G.A., Awan, T., Dar, R.A., Arshad, F., Tabidi, M.A., Das, R., Ahmed, W., Asiri, A.M., Qurashi, A.H. (2021). A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 25, 101228. https://doi.org/10.1016/j.jscs.2021.101228
dc.relation.references2. Huang, A., He, Y., Zhou, Y., Zhou, Y., Yang, Y., Zhang, J., Luo, L., Mao, Q., Hou, D., Yang, J. (2019). A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. Journal of Materials Science, 54, 949-973. https://doi.org/10.1007/s10853-018-2961-5
dc.relation.references3. Nakajima, H. (2019). Fabrication, Mechanical and Physical Properties, and Its Application of Lotus-Type Porous Metals. Materials Transactions, 60, 2481-2489. https://doi.org/10.2320/matertrans.MT-M2019182
dc.relation.references4. Chen, J., Wang, Y., Li, S., Chen, H., Qiao, X., Zhao, J., Ma, Y., Alshareef, H.N. (2023). Porous Metal Current Collectors for Alkali Metal Batteries. Advanced Science, 10, 2205695. https://doi.org/10.1002/advs.202205695
dc.relation.references5. Wang, Z., Zhao, Y. (2023). Porous Nickel Electrode for Highly Sensitive Non-Enzyme Electrochemical Glucose Detection. Coatings, 13, 290. https://doi.org/10.3390/coatings13020290
dc.relation.references6. Zhu, P., Wu, Z., Zhao, Y. (2019). Hierarchical porous Cu with high surface area and fluid permeability. Scripta Materialia, 172, 119-124. https://doi.org/10.1016/j.scriptamat.2019.07.019
dc.relation.references7. Fujita, T., Kanoko, Y., Ito, Y., Chen, L., Hirata, A., Kashani, H., Iwatsu, O., Chen, M. (2015). Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2, 1500086. https://doi.org/10.1002/advs.201500086
dc.relation.references8. Hatamie, A., Rezvani, E., Rasouli, A.S., Simchi, A. (2018). Electrocatalytic Oxidation of Ethanol on Flexible Three-dimensional Interconnected Nickel/Gold Composite Foams in Alkaline Media. Electroanalysis, 30, 1-9. https://doi.org/10.1002/elan.201800490
dc.relation.references9. Wang, Y., Niu, C., Zhu, Y. (2019). Copper-Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Nanomaterials, 9, 173. https://doi.org/10.3390/nano9020173
dc.relation.references10. Yu, J., Shen, M., Liu, S., Li, F. Sun, D., Wang, T. (2017). A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate. Applied Surface Science, 406, 285-293. https://doi.org/10.1016/j.apsusc.2017.02.103
dc.relation.references11. Tamašauskaitė-Tamašiūnaitė, L., Zabielaitė, A., Balčiūnaitė, A., Šebeka, B., Stalnionienė, I., Buzas, V., Mačiulis, L., Tumonis, L., Norkus, E. (2017). Deposition of Pt Nanoparticles on Ni Foam via Galvanic Displacement. Journal of The Electrochemical Society, 164, D53-D56. https://doi.org/10.1149/2.0601702jes
dc.relation.references12. Rizk, M.R., Abd El-Moghny, M.G. (2020). Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. International Journal of Hydrogen Energy, 10, 645-655. https://doi.org/10.1016/j.ijhydene.2020.10.004
dc.relation.references13. Zavatski, S., Popov, A.I., Chemenev, A., Dauletbekova, A., Bandarenka, H. (2022). Wet Chemical Synthesis and Characterization of Au Coatings on Meso- and Macroporous Si for Molecular Analysis by SERS Spectroscopy. Crystals, 12, 1656. https://doi.org/10.3390/cryst12111656
dc.relation.references14. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13. https://doi.org/10.3389/fchem.2019.00085
dc.relation.references15. Zozulia, H.І., Kuntyi, O.I. (2019). Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review. Chemistry, Technology and Application of Substances, 2, 25-34. https://doi.org/10.23939/ctas2019.02.025
dc.relation.references16. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V. (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5-15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
dc.relation.references17. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V., Nichkalo, S.I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 3, 74-82. https://doi.org/10.32434/0321-4095-2019-124-3-74-82
dc.relation.references18. Niu, X., Xiong, Q., Li, X., Zhang, W., He, Y., Pan, J., Qiu, F., Yan, Y. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, F651-F657. https://doi.org/10.1149/2.1551706jes
dc.relation.references19. Verlato, E., He, W., Amrane, A., Barison, S., Floner, D., Fourcade, F., Geneste, F., Musiani, M., Seraglia, R. (2016). Preparation of Ag-modified Ni foams by galvanic displacement and their use as cathodes for the reductive dechlorination of herbicides. ChemElectroChem, 3, 2084-2092. https://doi.org/10.1002/celc.201600214
dc.relation.references20. Kamyabi, M.A., Jadali, S. (2021). A sponge like Pd arrays on Ni foam substrate: Highly active non-platinum electrocatalyst for methanol oxidation in alkaline media. Materials Chemistry and Physics, 257, 123626. https://doi.org/10.1016/j.matchemphys.2020.123626
dc.relation.references21. Kutyła, D., Nakajima, K., Fukumoto, M., Wojnicki, M., Kołczyk-Siedlecka, K. (2023). Electrocatalytic Performance of Ethanol Oxidation on Ni and Ni/Pd Surface-Decorated Porous Structures Obtained by Molten Salts Deposition/Dissolution of Al-Ni Alloys. International Journal of Molecular Sciences, 24, 3836. https://doi.org/10.3390/ijms24043836
dc.relation.references22. Schichtl, Z.G., Mehrabi, H., Coridan, R.H. (2020). Electrooxidation of Glycerol on Self-Organized, Mixed Au-Pt Interfaces Formed on Ni Substrates. Journal of The Electrochemical Society, 167, 056502. https://doi.org/10.1149/1945-7111/ab679e
dc.relation.references23. Kang, Y., Chen, F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677. https://doi.org/10.1007/s10800-013-0563-0
dc.relation.references24. Rahmatolahzadeh, R., Ebadi, M., Motevalli, K. (2017) Preparation and characterization of Cu clusters and Cu-Ag alloy via galvanic replacement method for azo dyes degradation. Journal of Materials Science: Materials in Electronics, 28, 6056-6063. https://doi.org/10.1007/s10854-016-6281-8
dc.relation.references25. Wang, C., Wang, C., Xiong, Z., Wang, J., Zhang, W., Shi, H., Wang, D., Gu, Y., Bai, Z., Gao, Y., Yan, X. (2022) Silver modified copper foam electrodes for enhanced reduction of CO2 to C2+ products. Materials Advances, 3, 4964-4972. https://doi.org/10.1039/d2ma00188h
dc.relation.references26. Zozulya, G.I., Kuntyi, O.I., Mertsalo, I.P., Mazur, A.S. (2021). Production of Cu/Ag porous bimetal by the galvanic replacement of dezincified brass. Materials Science, 56, 668-672. https://doi.org/10.1007/s11003-021-00480-y
dc.relation.references27. Balkis, A., Crawford, J., O'Mullane, A.P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction. Nanomaterials, 8, 756. https://doi.org/10.3390/nano8100756
dc.relation.references28. Anderson, S.R., O'Mullane, A.P., Gaspera, E.D., Ramanathan, Bansal, R.V. (2019). LSPR-Induced Catalytic Enhancement Using Bimetallic Copper Fabrics Prepared by Galvanic Replacement Reactions. Advanced Materials Interfaces, 1900516. https://doi.org/10.1002/admi.201900516
dc.relation.references29. Rezaei, B., Mokhtarianpour, M., Ensafi, A.A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 40, 6754-6762. http://dx.doi.org/10.1016/j.ijhydene.2015.03.122
dc.relation.references30. Nitopi, S., Bertheussen, E., Scott, S.B., Liu, X., Engstfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., Nørskov, J.K., Jaramillo, T.F., Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119, 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705
dc.relation.references31. Li, C.W., Kanan, M.W. (2012). CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. Journal of the American Chemical Society, 134, 7231−7234. https://doi.org/10.1021/ja3010978
dc.relation.references32. Gnilitskyi, I., Bellucci, S., Marrani, A.G., Shepida, M., Mazur, A., Zozulya, G., Kordan, V., Babizhetskyy, V., Sahraoui, B., Kuntyi, O. (2023) Femtosecond laser‑induced nano‑ and microstructuring of Cu electrodes for CO2 electroreduction in acetonitrile medium. Scientific Reports, 13, 8837. https://doi.org/10.1038/s41598-023-35869-z
dc.relation.references33. Abbasi, N., Shahbazi, P., Kiani A. (2013) Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement. Journal of Materials Chemistry A, 1, 9966-9972. https://doi.org/10.1039/c3ta10706j
dc.relation.references34. Mohl, M., Dobo, D., Kukovecz, A., Konya, Z., Kordas, K., Wei, J., Vajtai, R., Ajayan, P.M. (2011). Formation of CuPd and CuPt Bimetallic Nanotubes by Galvanic Replacement Reaction. The Journal of Physical Chemistry C, 115, 9403-9409. https://doi.org/10.1021/jp112128g
dc.relation.references35. He, X., He, R., Lan, Q., Duan, F., Xiao, J., Song, M., Zhang, M., Chen, Y., Li, Y. (2016). A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement. Journal of Nanomaterials, 2016, Article ID 2127980. http://dx.doi.org/10.1155/2016/2127980
dc.relation.referencesen1. Hassan, I.U., Salim, H., Naikoo, G.A., Awan, T., Dar, R.A., Arshad, F., Tabidi, M.A., Das, R., Ahmed, W., Asiri, A.M., Qurashi, A.H. (2021). A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 25, 101228. https://doi.org/10.1016/j.jscs.2021.101228
dc.relation.referencesen2. Huang, A., He, Y., Zhou, Y., Zhou, Y., Yang, Y., Zhang, J., Luo, L., Mao, Q., Hou, D., Yang, J. (2019). A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. Journal of Materials Science, 54, 949-973. https://doi.org/10.1007/s10853-018-2961-5
dc.relation.referencesen3. Nakajima, H. (2019). Fabrication, Mechanical and Physical Properties, and Its Application of Lotus-Type Porous Metals. Materials Transactions, 60, 2481-2489. https://doi.org/10.2320/matertrans.MT-M2019182
dc.relation.referencesen4. Chen, J., Wang, Y., Li, S., Chen, H., Qiao, X., Zhao, J., Ma, Y., Alshareef, H.N. (2023). Porous Metal Current Collectors for Alkali Metal Batteries. Advanced Science, 10, 2205695. https://doi.org/10.1002/advs.202205695
dc.relation.referencesen5. Wang, Z., Zhao, Y. (2023). Porous Nickel Electrode for Highly Sensitive Non-Enzyme Electrochemical Glucose Detection. Coatings, 13, 290. https://doi.org/10.3390/coatings13020290
dc.relation.referencesen6. Zhu, P., Wu, Z., Zhao, Y. (2019). Hierarchical porous Cu with high surface area and fluid permeability. Scripta Materialia, 172, 119-124. https://doi.org/10.1016/j.scriptamat.2019.07.019
dc.relation.referencesen7. Fujita, T., Kanoko, Y., Ito, Y., Chen, L., Hirata, A., Kashani, H., Iwatsu, O., Chen, M. (2015). Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2, 1500086. https://doi.org/10.1002/advs.201500086
dc.relation.referencesen8. Hatamie, A., Rezvani, E., Rasouli, A.S., Simchi, A. (2018). Electrocatalytic Oxidation of Ethanol on Flexible Three-dimensional Interconnected Nickel/Gold Composite Foams in Alkaline Media. Electroanalysis, 30, 1-9. https://doi.org/10.1002/elan.201800490
dc.relation.referencesen9. Wang, Y., Niu, C., Zhu, Y. (2019). Copper-Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Nanomaterials, 9, 173. https://doi.org/10.3390/nano9020173
dc.relation.referencesen10. Yu, J., Shen, M., Liu, S., Li, F. Sun, D., Wang, T. (2017). A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate. Applied Surface Science, 406, 285-293. https://doi.org/10.1016/j.apsusc.2017.02.103
dc.relation.referencesen11. Tamašauskaitė-Tamašiūnaitė, L., Zabielaitė, A., Balčiūnaitė, A., Šebeka, B., Stalnionienė, I., Buzas, V., Mačiulis, L., Tumonis, L., Norkus, E. (2017). Deposition of Pt Nanoparticles on Ni Foam via Galvanic Displacement. Journal of The Electrochemical Society, 164, D53-D56. https://doi.org/10.1149/2.0601702jes
dc.relation.referencesen12. Rizk, M.R., Abd El-Moghny, M.G. (2020). Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. International Journal of Hydrogen Energy, 10, 645-655. https://doi.org/10.1016/j.ijhydene.2020.10.004
dc.relation.referencesen13. Zavatski, S., Popov, A.I., Chemenev, A., Dauletbekova, A., Bandarenka, H. (2022). Wet Chemical Synthesis and Characterization of Au Coatings on Meso- and Macroporous Si for Molecular Analysis by SERS Spectroscopy. Crystals, 12, 1656. https://doi.org/10.3390/cryst12111656
dc.relation.referencesen14. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13. https://doi.org/10.3389/fchem.2019.00085
dc.relation.referencesen15. Zozulia, H.I., Kuntyi, O.I. (2019). Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review. Chemistry, Technology and Application of Substances, 2, 25-34. https://doi.org/10.23939/ctas2019.02.025
dc.relation.referencesen16. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V. (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5-15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
dc.relation.referencesen17. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V., Nichkalo, S.I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 3, 74-82. https://doi.org/10.32434/0321-4095-2019-124-3-74-82
dc.relation.referencesen18. Niu, X., Xiong, Q., Li, X., Zhang, W., He, Y., Pan, J., Qiu, F., Yan, Y. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, F651-F657. https://doi.org/10.1149/2.1551706jes
dc.relation.referencesen19. Verlato, E., He, W., Amrane, A., Barison, S., Floner, D., Fourcade, F., Geneste, F., Musiani, M., Seraglia, R. (2016). Preparation of Ag-modified Ni foams by galvanic displacement and their use as cathodes for the reductive dechlorination of herbicides. ChemElectroChem, 3, 2084-2092. https://doi.org/10.1002/celc.201600214
dc.relation.referencesen20. Kamyabi, M.A., Jadali, S. (2021). A sponge like Pd arrays on Ni foam substrate: Highly active non-platinum electrocatalyst for methanol oxidation in alkaline media. Materials Chemistry and Physics, 257, 123626. https://doi.org/10.1016/j.matchemphys.2020.123626
dc.relation.referencesen21. Kutyła, D., Nakajima, K., Fukumoto, M., Wojnicki, M., Kołczyk-Siedlecka, K. (2023). Electrocatalytic Performance of Ethanol Oxidation on Ni and Ni/Pd Surface-Decorated Porous Structures Obtained by Molten Salts Deposition/Dissolution of Al-Ni Alloys. International Journal of Molecular Sciences, 24, 3836. https://doi.org/10.3390/ijms24043836
dc.relation.referencesen22. Schichtl, Z.G., Mehrabi, H., Coridan, R.H. (2020). Electrooxidation of Glycerol on Self-Organized, Mixed Au-Pt Interfaces Formed on Ni Substrates. Journal of The Electrochemical Society, 167, 056502. https://doi.org/10.1149/1945-7111/ab679e
dc.relation.referencesen23. Kang, Y., Chen, F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677. https://doi.org/10.1007/s10800-013-0563-0
dc.relation.referencesen24. Rahmatolahzadeh, R., Ebadi, M., Motevalli, K. (2017) Preparation and characterization of Cu clusters and Cu-Ag alloy via galvanic replacement method for azo dyes degradation. Journal of Materials Science: Materials in Electronics, 28, 6056-6063. https://doi.org/10.1007/s10854-016-6281-8
dc.relation.referencesen25. Wang, C., Wang, C., Xiong, Z., Wang, J., Zhang, W., Shi, H., Wang, D., Gu, Y., Bai, Z., Gao, Y., Yan, X. (2022) Silver modified copper foam electrodes for enhanced reduction of CO2 to P.2+ products. Materials Advances, 3, 4964-4972. https://doi.org/10.1039/d2ma00188h
dc.relation.referencesen26. Zozulya, G.I., Kuntyi, O.I., Mertsalo, I.P., Mazur, A.S. (2021). Production of Cu/Ag porous bimetal by the galvanic replacement of dezincified brass. Materials Science, 56, 668-672. https://doi.org/10.1007/s11003-021-00480-y
dc.relation.referencesen27. Balkis, A., Crawford, J., O'Mullane, A.P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction. Nanomaterials, 8, 756. https://doi.org/10.3390/nano8100756
dc.relation.referencesen28. Anderson, S.R., O'Mullane, A.P., Gaspera, E.D., Ramanathan, Bansal, R.V. (2019). LSPR-Induced Catalytic Enhancement Using Bimetallic Copper Fabrics Prepared by Galvanic Replacement Reactions. Advanced Materials Interfaces, 1900516. https://doi.org/10.1002/admi.201900516
dc.relation.referencesen29. Rezaei, B., Mokhtarianpour, M., Ensafi, A.A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 40, 6754-6762. http://dx.doi.org/10.1016/j.ijhydene.2015.03.122
dc.relation.referencesen30. Nitopi, S., Bertheussen, E., Scott, S.B., Liu, X., Engstfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., Nørskov, J.K., Jaramillo, T.F., Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119, 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705
dc.relation.referencesen31. Li, C.W., Kanan, M.W. (2012). CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. Journal of the American Chemical Society, 134, 7231−7234. https://doi.org/10.1021/ja3010978
dc.relation.referencesen32. Gnilitskyi, I., Bellucci, S., Marrani, A.G., Shepida, M., Mazur, A., Zozulya, G., Kordan, V., Babizhetskyy, V., Sahraoui, B., Kuntyi, O. (2023) Femtosecond laser‑induced nano‑ and microstructuring of Cu electrodes for CO2 electroreduction in acetonitrile medium. Scientific Reports, 13, 8837. https://doi.org/10.1038/s41598-023-35869-z
dc.relation.referencesen33. Abbasi, N., Shahbazi, P., Kiani A. (2013) Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement. Journal of Materials Chemistry A, 1, 9966-9972. https://doi.org/10.1039/P.3ta10706j
dc.relation.referencesen34. Mohl, M., Dobo, D., Kukovecz, A., Konya, Z., Kordas, K., Wei, J., Vajtai, R., Ajayan, P.M. (2011). Formation of CuPd and CuPt Bimetallic Nanotubes by Galvanic Replacement Reaction. The Journal of Physical Chemistry C, 115, 9403-9409. https://doi.org/10.1021/jp112128g
dc.relation.referencesen35. He, X., He, R., Lan, Q., Duan, F., Xiao, J., Song, M., Zhang, M., Chen, Y., Li, Y. (2016). A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement. Journal of Nanomaterials, 2016, Article ID 2127980. http://dx.doi.org/10.1155/2016/2127980
dc.relation.urihttps://doi.org/10.1016/j.jscs.2021.101228
dc.relation.urihttps://doi.org/10.1007/s10853-018-2961-5
dc.relation.urihttps://doi.org/10.2320/matertrans.MT-M2019182
dc.relation.urihttps://doi.org/10.1002/advs.202205695
dc.relation.urihttps://doi.org/10.3390/coatings13020290
dc.relation.urihttps://doi.org/10.1016/j.scriptamat.2019.07.019
dc.relation.urihttps://doi.org/10.1002/advs.201500086
dc.relation.urihttps://doi.org/10.1002/elan.201800490
dc.relation.urihttps://doi.org/10.3390/nano9020173
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2017.02.103
dc.relation.urihttps://doi.org/10.1149/2.0601702jes
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2020.10.004
dc.relation.urihttps://doi.org/10.3390/cryst12111656
dc.relation.urihttps://doi.org/10.3389/fchem.2019.00085
dc.relation.urihttps://doi.org/10.23939/ctas2019.02.025
dc.relation.urihttps://doi.org/10.32434/0321-4095-2020-131-4-5-15
dc.relation.urihttps://doi.org/10.32434/0321-4095-2019-124-3-74-82
dc.relation.urihttps://doi.org/10.1149/2.1551706jes
dc.relation.urihttps://doi.org/10.1002/celc.201600214
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2020.123626
dc.relation.urihttps://doi.org/10.3390/ijms24043836
dc.relation.urihttps://doi.org/10.1149/1945-7111/ab679e
dc.relation.urihttps://doi.org/10.1007/s10800-013-0563-0
dc.relation.urihttps://doi.org/10.1007/s10854-016-6281-8
dc.relation.urihttps://doi.org/10.1039/d2ma00188h
dc.relation.urihttps://doi.org/10.1007/s11003-021-00480-y
dc.relation.urihttps://doi.org/10.3390/nano8100756
dc.relation.urihttps://doi.org/10.1002/admi.201900516
dc.relation.urihttp://dx.doi.org/10.1016/j.ijhydene.2015.03.122
dc.relation.urihttps://doi.org/10.1021/acs.chemrev.8b00705
dc.relation.urihttps://doi.org/10.1021/ja3010978
dc.relation.urihttps://doi.org/10.1038/s41598-023-35869-z
dc.relation.urihttps://doi.org/10.1039/c3ta10706j
dc.relation.urihttps://doi.org/10.1021/jp112128g
dc.relation.urihttp://dx.doi.org/10.1155/2016/2127980
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectпористі метали
dc.subjectпіна
dc.subjectнанодендрит
dc.subjectгальванічна заміна
dc.subjectметалеві наночастинки
dc.subjectнаноструктури
dc.subjectповерхні нікелю та міді
dc.subjectporous metals
dc.subjectfoam
dc.subjectnanodendrite
dc.subjectgalvanic replacement
dc.subjectmetal nanoparticles
dc.subjectnanostructures
dc.subjectnickel and copper surfaces
dc.titleDecoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview
dc.title.alternativeДекорування 3D поверхні нікелю та міді металевими наночастинками та наноструктурами гальванічним заміщенням. Мініогляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Zozulia_G_I-Decoration_of_3D_nickel_29-37.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Zozulia_G_I-Decoration_of_3D_nickel_29-37__COVER.png
Size:
1.2 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: