Decoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview
dc.citation.epage | 37 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 29 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Науково-технологічний університет Адана Алпарслана Тюркеша | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Adana Alparslan Türkeş Science and Technology University | |
dc.contributor.author | Зозуля, Г. І. | |
dc.contributor.author | Шепіда, М. В. | |
dc.contributor.author | Гюшлютен, Ч. | |
dc.contributor.author | Кунтий, Орест Іванович | |
dc.contributor.author | Zozulia, G. I. | |
dc.contributor.author | Shepida, M. V. | |
dc.contributor.author | Güçlüten, Ç. | |
dc.contributor.author | Kuntyi, O. I. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:12:30Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Розглянуто ефективність методу гальванічного заміщення для декорування поруватої поверхні металевими наночастинками та наноструктурами. Показано, що залежно від функціонального призначення для модифікації гальванічним заміщенням переважно застосовують пінні, поруваті та дендритні металеві 3D субстрати. Зокрема це нікелеві та мідні субстрати, на які осаджують noble metals. Наведено особливості формування наноромірних осадів на поруватих мідній і нікелевій поверхнях залежно від структури останніх та умов гальванічного заміщення. Зазначено основні сфери їх застосування. | |
dc.description.abstract | The effectiveness of the galvanic replacement method for decorating a porous surface with metal nanoparticles and nanostructures is considered. It is shown that depending on the functional purpose, foam, porous, and dendritic metal 3D substrates are mainly used for modification by galvanic replacement. In particular, these are nickel and copper substrates on which noble metals are deposited. The peculiarities of the formation of nanosized deposits on porous copper and nickel surfaces depending on the structure of the latter and the conditions of galvanic substitution are given. The main areas of their application are specified. | |
dc.format.extent | 29-37 | |
dc.format.pages | 9 | |
dc.identifier.citation | Decoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview / G. I. Zozulia, M. V. Shepida, Ç. Güçlüten, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 29–37. | |
dc.identifier.citationen | Decoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview / G. I. Zozulia, M. V. Shepida, Ç. Güçlüten, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 29–37. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.02.029 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63682 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.references | 1. Hassan, I.U., Salim, H., Naikoo, G.A., Awan, T., Dar, R.A., Arshad, F., Tabidi, M.A., Das, R., Ahmed, W., Asiri, A.M., Qurashi, A.H. (2021). A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 25, 101228. https://doi.org/10.1016/j.jscs.2021.101228 | |
dc.relation.references | 2. Huang, A., He, Y., Zhou, Y., Zhou, Y., Yang, Y., Zhang, J., Luo, L., Mao, Q., Hou, D., Yang, J. (2019). A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. Journal of Materials Science, 54, 949-973. https://doi.org/10.1007/s10853-018-2961-5 | |
dc.relation.references | 3. Nakajima, H. (2019). Fabrication, Mechanical and Physical Properties, and Its Application of Lotus-Type Porous Metals. Materials Transactions, 60, 2481-2489. https://doi.org/10.2320/matertrans.MT-M2019182 | |
dc.relation.references | 4. Chen, J., Wang, Y., Li, S., Chen, H., Qiao, X., Zhao, J., Ma, Y., Alshareef, H.N. (2023). Porous Metal Current Collectors for Alkali Metal Batteries. Advanced Science, 10, 2205695. https://doi.org/10.1002/advs.202205695 | |
dc.relation.references | 5. Wang, Z., Zhao, Y. (2023). Porous Nickel Electrode for Highly Sensitive Non-Enzyme Electrochemical Glucose Detection. Coatings, 13, 290. https://doi.org/10.3390/coatings13020290 | |
dc.relation.references | 6. Zhu, P., Wu, Z., Zhao, Y. (2019). Hierarchical porous Cu with high surface area and fluid permeability. Scripta Materialia, 172, 119-124. https://doi.org/10.1016/j.scriptamat.2019.07.019 | |
dc.relation.references | 7. Fujita, T., Kanoko, Y., Ito, Y., Chen, L., Hirata, A., Kashani, H., Iwatsu, O., Chen, M. (2015). Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2, 1500086. https://doi.org/10.1002/advs.201500086 | |
dc.relation.references | 8. Hatamie, A., Rezvani, E., Rasouli, A.S., Simchi, A. (2018). Electrocatalytic Oxidation of Ethanol on Flexible Three-dimensional Interconnected Nickel/Gold Composite Foams in Alkaline Media. Electroanalysis, 30, 1-9. https://doi.org/10.1002/elan.201800490 | |
dc.relation.references | 9. Wang, Y., Niu, C., Zhu, Y. (2019). Copper-Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Nanomaterials, 9, 173. https://doi.org/10.3390/nano9020173 | |
dc.relation.references | 10. Yu, J., Shen, M., Liu, S., Li, F. Sun, D., Wang, T. (2017). A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate. Applied Surface Science, 406, 285-293. https://doi.org/10.1016/j.apsusc.2017.02.103 | |
dc.relation.references | 11. Tamašauskaitė-Tamašiūnaitė, L., Zabielaitė, A., Balčiūnaitė, A., Šebeka, B., Stalnionienė, I., Buzas, V., Mačiulis, L., Tumonis, L., Norkus, E. (2017). Deposition of Pt Nanoparticles on Ni Foam via Galvanic Displacement. Journal of The Electrochemical Society, 164, D53-D56. https://doi.org/10.1149/2.0601702jes | |
dc.relation.references | 12. Rizk, M.R., Abd El-Moghny, M.G. (2020). Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. International Journal of Hydrogen Energy, 10, 645-655. https://doi.org/10.1016/j.ijhydene.2020.10.004 | |
dc.relation.references | 13. Zavatski, S., Popov, A.I., Chemenev, A., Dauletbekova, A., Bandarenka, H. (2022). Wet Chemical Synthesis and Characterization of Au Coatings on Meso- and Macroporous Si for Molecular Analysis by SERS Spectroscopy. Crystals, 12, 1656. https://doi.org/10.3390/cryst12111656 | |
dc.relation.references | 14. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13. https://doi.org/10.3389/fchem.2019.00085 | |
dc.relation.references | 15. Zozulia, H.І., Kuntyi, O.I. (2019). Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review. Chemistry, Technology and Application of Substances, 2, 25-34. https://doi.org/10.23939/ctas2019.02.025 | |
dc.relation.references | 16. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V. (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5-15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15 | |
dc.relation.references | 17. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V., Nichkalo, S.I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 3, 74-82. https://doi.org/10.32434/0321-4095-2019-124-3-74-82 | |
dc.relation.references | 18. Niu, X., Xiong, Q., Li, X., Zhang, W., He, Y., Pan, J., Qiu, F., Yan, Y. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, F651-F657. https://doi.org/10.1149/2.1551706jes | |
dc.relation.references | 19. Verlato, E., He, W., Amrane, A., Barison, S., Floner, D., Fourcade, F., Geneste, F., Musiani, M., Seraglia, R. (2016). Preparation of Ag-modified Ni foams by galvanic displacement and their use as cathodes for the reductive dechlorination of herbicides. ChemElectroChem, 3, 2084-2092. https://doi.org/10.1002/celc.201600214 | |
dc.relation.references | 20. Kamyabi, M.A., Jadali, S. (2021). A sponge like Pd arrays on Ni foam substrate: Highly active non-platinum electrocatalyst for methanol oxidation in alkaline media. Materials Chemistry and Physics, 257, 123626. https://doi.org/10.1016/j.matchemphys.2020.123626 | |
dc.relation.references | 21. Kutyła, D., Nakajima, K., Fukumoto, M., Wojnicki, M., Kołczyk-Siedlecka, K. (2023). Electrocatalytic Performance of Ethanol Oxidation on Ni and Ni/Pd Surface-Decorated Porous Structures Obtained by Molten Salts Deposition/Dissolution of Al-Ni Alloys. International Journal of Molecular Sciences, 24, 3836. https://doi.org/10.3390/ijms24043836 | |
dc.relation.references | 22. Schichtl, Z.G., Mehrabi, H., Coridan, R.H. (2020). Electrooxidation of Glycerol on Self-Organized, Mixed Au-Pt Interfaces Formed on Ni Substrates. Journal of The Electrochemical Society, 167, 056502. https://doi.org/10.1149/1945-7111/ab679e | |
dc.relation.references | 23. Kang, Y., Chen, F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677. https://doi.org/10.1007/s10800-013-0563-0 | |
dc.relation.references | 24. Rahmatolahzadeh, R., Ebadi, M., Motevalli, K. (2017) Preparation and characterization of Cu clusters and Cu-Ag alloy via galvanic replacement method for azo dyes degradation. Journal of Materials Science: Materials in Electronics, 28, 6056-6063. https://doi.org/10.1007/s10854-016-6281-8 | |
dc.relation.references | 25. Wang, C., Wang, C., Xiong, Z., Wang, J., Zhang, W., Shi, H., Wang, D., Gu, Y., Bai, Z., Gao, Y., Yan, X. (2022) Silver modified copper foam electrodes for enhanced reduction of CO2 to C2+ products. Materials Advances, 3, 4964-4972. https://doi.org/10.1039/d2ma00188h | |
dc.relation.references | 26. Zozulya, G.I., Kuntyi, O.I., Mertsalo, I.P., Mazur, A.S. (2021). Production of Cu/Ag porous bimetal by the galvanic replacement of dezincified brass. Materials Science, 56, 668-672. https://doi.org/10.1007/s11003-021-00480-y | |
dc.relation.references | 27. Balkis, A., Crawford, J., O'Mullane, A.P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction. Nanomaterials, 8, 756. https://doi.org/10.3390/nano8100756 | |
dc.relation.references | 28. Anderson, S.R., O'Mullane, A.P., Gaspera, E.D., Ramanathan, Bansal, R.V. (2019). LSPR-Induced Catalytic Enhancement Using Bimetallic Copper Fabrics Prepared by Galvanic Replacement Reactions. Advanced Materials Interfaces, 1900516. https://doi.org/10.1002/admi.201900516 | |
dc.relation.references | 29. Rezaei, B., Mokhtarianpour, M., Ensafi, A.A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 40, 6754-6762. http://dx.doi.org/10.1016/j.ijhydene.2015.03.122 | |
dc.relation.references | 30. Nitopi, S., Bertheussen, E., Scott, S.B., Liu, X., Engstfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., Nørskov, J.K., Jaramillo, T.F., Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119, 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705 | |
dc.relation.references | 31. Li, C.W., Kanan, M.W. (2012). CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. Journal of the American Chemical Society, 134, 7231−7234. https://doi.org/10.1021/ja3010978 | |
dc.relation.references | 32. Gnilitskyi, I., Bellucci, S., Marrani, A.G., Shepida, M., Mazur, A., Zozulya, G., Kordan, V., Babizhetskyy, V., Sahraoui, B., Kuntyi, O. (2023) Femtosecond laser‑induced nano‑ and microstructuring of Cu electrodes for CO2 electroreduction in acetonitrile medium. Scientific Reports, 13, 8837. https://doi.org/10.1038/s41598-023-35869-z | |
dc.relation.references | 33. Abbasi, N., Shahbazi, P., Kiani A. (2013) Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement. Journal of Materials Chemistry A, 1, 9966-9972. https://doi.org/10.1039/c3ta10706j | |
dc.relation.references | 34. Mohl, M., Dobo, D., Kukovecz, A., Konya, Z., Kordas, K., Wei, J., Vajtai, R., Ajayan, P.M. (2011). Formation of CuPd and CuPt Bimetallic Nanotubes by Galvanic Replacement Reaction. The Journal of Physical Chemistry C, 115, 9403-9409. https://doi.org/10.1021/jp112128g | |
dc.relation.references | 35. He, X., He, R., Lan, Q., Duan, F., Xiao, J., Song, M., Zhang, M., Chen, Y., Li, Y. (2016). A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement. Journal of Nanomaterials, 2016, Article ID 2127980. http://dx.doi.org/10.1155/2016/2127980 | |
dc.relation.referencesen | 1. Hassan, I.U., Salim, H., Naikoo, G.A., Awan, T., Dar, R.A., Arshad, F., Tabidi, M.A., Das, R., Ahmed, W., Asiri, A.M., Qurashi, A.H. (2021). A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 25, 101228. https://doi.org/10.1016/j.jscs.2021.101228 | |
dc.relation.referencesen | 2. Huang, A., He, Y., Zhou, Y., Zhou, Y., Yang, Y., Zhang, J., Luo, L., Mao, Q., Hou, D., Yang, J. (2019). A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. Journal of Materials Science, 54, 949-973. https://doi.org/10.1007/s10853-018-2961-5 | |
dc.relation.referencesen | 3. Nakajima, H. (2019). Fabrication, Mechanical and Physical Properties, and Its Application of Lotus-Type Porous Metals. Materials Transactions, 60, 2481-2489. https://doi.org/10.2320/matertrans.MT-M2019182 | |
dc.relation.referencesen | 4. Chen, J., Wang, Y., Li, S., Chen, H., Qiao, X., Zhao, J., Ma, Y., Alshareef, H.N. (2023). Porous Metal Current Collectors for Alkali Metal Batteries. Advanced Science, 10, 2205695. https://doi.org/10.1002/advs.202205695 | |
dc.relation.referencesen | 5. Wang, Z., Zhao, Y. (2023). Porous Nickel Electrode for Highly Sensitive Non-Enzyme Electrochemical Glucose Detection. Coatings, 13, 290. https://doi.org/10.3390/coatings13020290 | |
dc.relation.referencesen | 6. Zhu, P., Wu, Z., Zhao, Y. (2019). Hierarchical porous Cu with high surface area and fluid permeability. Scripta Materialia, 172, 119-124. https://doi.org/10.1016/j.scriptamat.2019.07.019 | |
dc.relation.referencesen | 7. Fujita, T., Kanoko, Y., Ito, Y., Chen, L., Hirata, A., Kashani, H., Iwatsu, O., Chen, M. (2015). Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2, 1500086. https://doi.org/10.1002/advs.201500086 | |
dc.relation.referencesen | 8. Hatamie, A., Rezvani, E., Rasouli, A.S., Simchi, A. (2018). Electrocatalytic Oxidation of Ethanol on Flexible Three-dimensional Interconnected Nickel/Gold Composite Foams in Alkaline Media. Electroanalysis, 30, 1-9. https://doi.org/10.1002/elan.201800490 | |
dc.relation.referencesen | 9. Wang, Y., Niu, C., Zhu, Y. (2019). Copper-Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Nanomaterials, 9, 173. https://doi.org/10.3390/nano9020173 | |
dc.relation.referencesen | 10. Yu, J., Shen, M., Liu, S., Li, F. Sun, D., Wang, T. (2017). A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate. Applied Surface Science, 406, 285-293. https://doi.org/10.1016/j.apsusc.2017.02.103 | |
dc.relation.referencesen | 11. Tamašauskaitė-Tamašiūnaitė, L., Zabielaitė, A., Balčiūnaitė, A., Šebeka, B., Stalnionienė, I., Buzas, V., Mačiulis, L., Tumonis, L., Norkus, E. (2017). Deposition of Pt Nanoparticles on Ni Foam via Galvanic Displacement. Journal of The Electrochemical Society, 164, D53-D56. https://doi.org/10.1149/2.0601702jes | |
dc.relation.referencesen | 12. Rizk, M.R., Abd El-Moghny, M.G. (2020). Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. International Journal of Hydrogen Energy, 10, 645-655. https://doi.org/10.1016/j.ijhydene.2020.10.004 | |
dc.relation.referencesen | 13. Zavatski, S., Popov, A.I., Chemenev, A., Dauletbekova, A., Bandarenka, H. (2022). Wet Chemical Synthesis and Characterization of Au Coatings on Meso- and Macroporous Si for Molecular Analysis by SERS Spectroscopy. Crystals, 12, 1656. https://doi.org/10.3390/cryst12111656 | |
dc.relation.referencesen | 14. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13. https://doi.org/10.3389/fchem.2019.00085 | |
dc.relation.referencesen | 15. Zozulia, H.I., Kuntyi, O.I. (2019). Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review. Chemistry, Technology and Application of Substances, 2, 25-34. https://doi.org/10.23939/ctas2019.02.025 | |
dc.relation.referencesen | 16. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V. (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5-15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15 | |
dc.relation.referencesen | 17. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V., Nichkalo, S.I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 3, 74-82. https://doi.org/10.32434/0321-4095-2019-124-3-74-82 | |
dc.relation.referencesen | 18. Niu, X., Xiong, Q., Li, X., Zhang, W., He, Y., Pan, J., Qiu, F., Yan, Y. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, F651-F657. https://doi.org/10.1149/2.1551706jes | |
dc.relation.referencesen | 19. Verlato, E., He, W., Amrane, A., Barison, S., Floner, D., Fourcade, F., Geneste, F., Musiani, M., Seraglia, R. (2016). Preparation of Ag-modified Ni foams by galvanic displacement and their use as cathodes for the reductive dechlorination of herbicides. ChemElectroChem, 3, 2084-2092. https://doi.org/10.1002/celc.201600214 | |
dc.relation.referencesen | 20. Kamyabi, M.A., Jadali, S. (2021). A sponge like Pd arrays on Ni foam substrate: Highly active non-platinum electrocatalyst for methanol oxidation in alkaline media. Materials Chemistry and Physics, 257, 123626. https://doi.org/10.1016/j.matchemphys.2020.123626 | |
dc.relation.referencesen | 21. Kutyła, D., Nakajima, K., Fukumoto, M., Wojnicki, M., Kołczyk-Siedlecka, K. (2023). Electrocatalytic Performance of Ethanol Oxidation on Ni and Ni/Pd Surface-Decorated Porous Structures Obtained by Molten Salts Deposition/Dissolution of Al-Ni Alloys. International Journal of Molecular Sciences, 24, 3836. https://doi.org/10.3390/ijms24043836 | |
dc.relation.referencesen | 22. Schichtl, Z.G., Mehrabi, H., Coridan, R.H. (2020). Electrooxidation of Glycerol on Self-Organized, Mixed Au-Pt Interfaces Formed on Ni Substrates. Journal of The Electrochemical Society, 167, 056502. https://doi.org/10.1149/1945-7111/ab679e | |
dc.relation.referencesen | 23. Kang, Y., Chen, F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677. https://doi.org/10.1007/s10800-013-0563-0 | |
dc.relation.referencesen | 24. Rahmatolahzadeh, R., Ebadi, M., Motevalli, K. (2017) Preparation and characterization of Cu clusters and Cu-Ag alloy via galvanic replacement method for azo dyes degradation. Journal of Materials Science: Materials in Electronics, 28, 6056-6063. https://doi.org/10.1007/s10854-016-6281-8 | |
dc.relation.referencesen | 25. Wang, C., Wang, C., Xiong, Z., Wang, J., Zhang, W., Shi, H., Wang, D., Gu, Y., Bai, Z., Gao, Y., Yan, X. (2022) Silver modified copper foam electrodes for enhanced reduction of CO2 to P.2+ products. Materials Advances, 3, 4964-4972. https://doi.org/10.1039/d2ma00188h | |
dc.relation.referencesen | 26. Zozulya, G.I., Kuntyi, O.I., Mertsalo, I.P., Mazur, A.S. (2021). Production of Cu/Ag porous bimetal by the galvanic replacement of dezincified brass. Materials Science, 56, 668-672. https://doi.org/10.1007/s11003-021-00480-y | |
dc.relation.referencesen | 27. Balkis, A., Crawford, J., O'Mullane, A.P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction. Nanomaterials, 8, 756. https://doi.org/10.3390/nano8100756 | |
dc.relation.referencesen | 28. Anderson, S.R., O'Mullane, A.P., Gaspera, E.D., Ramanathan, Bansal, R.V. (2019). LSPR-Induced Catalytic Enhancement Using Bimetallic Copper Fabrics Prepared by Galvanic Replacement Reactions. Advanced Materials Interfaces, 1900516. https://doi.org/10.1002/admi.201900516 | |
dc.relation.referencesen | 29. Rezaei, B., Mokhtarianpour, M., Ensafi, A.A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 40, 6754-6762. http://dx.doi.org/10.1016/j.ijhydene.2015.03.122 | |
dc.relation.referencesen | 30. Nitopi, S., Bertheussen, E., Scott, S.B., Liu, X., Engstfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., Nørskov, J.K., Jaramillo, T.F., Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119, 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705 | |
dc.relation.referencesen | 31. Li, C.W., Kanan, M.W. (2012). CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. Journal of the American Chemical Society, 134, 7231−7234. https://doi.org/10.1021/ja3010978 | |
dc.relation.referencesen | 32. Gnilitskyi, I., Bellucci, S., Marrani, A.G., Shepida, M., Mazur, A., Zozulya, G., Kordan, V., Babizhetskyy, V., Sahraoui, B., Kuntyi, O. (2023) Femtosecond laser‑induced nano‑ and microstructuring of Cu electrodes for CO2 electroreduction in acetonitrile medium. Scientific Reports, 13, 8837. https://doi.org/10.1038/s41598-023-35869-z | |
dc.relation.referencesen | 33. Abbasi, N., Shahbazi, P., Kiani A. (2013) Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement. Journal of Materials Chemistry A, 1, 9966-9972. https://doi.org/10.1039/P.3ta10706j | |
dc.relation.referencesen | 34. Mohl, M., Dobo, D., Kukovecz, A., Konya, Z., Kordas, K., Wei, J., Vajtai, R., Ajayan, P.M. (2011). Formation of CuPd and CuPt Bimetallic Nanotubes by Galvanic Replacement Reaction. The Journal of Physical Chemistry C, 115, 9403-9409. https://doi.org/10.1021/jp112128g | |
dc.relation.referencesen | 35. He, X., He, R., Lan, Q., Duan, F., Xiao, J., Song, M., Zhang, M., Chen, Y., Li, Y. (2016). A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement. Journal of Nanomaterials, 2016, Article ID 2127980. http://dx.doi.org/10.1155/2016/2127980 | |
dc.relation.uri | https://doi.org/10.1016/j.jscs.2021.101228 | |
dc.relation.uri | https://doi.org/10.1007/s10853-018-2961-5 | |
dc.relation.uri | https://doi.org/10.2320/matertrans.MT-M2019182 | |
dc.relation.uri | https://doi.org/10.1002/advs.202205695 | |
dc.relation.uri | https://doi.org/10.3390/coatings13020290 | |
dc.relation.uri | https://doi.org/10.1016/j.scriptamat.2019.07.019 | |
dc.relation.uri | https://doi.org/10.1002/advs.201500086 | |
dc.relation.uri | https://doi.org/10.1002/elan.201800490 | |
dc.relation.uri | https://doi.org/10.3390/nano9020173 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2017.02.103 | |
dc.relation.uri | https://doi.org/10.1149/2.0601702jes | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2020.10.004 | |
dc.relation.uri | https://doi.org/10.3390/cryst12111656 | |
dc.relation.uri | https://doi.org/10.3389/fchem.2019.00085 | |
dc.relation.uri | https://doi.org/10.23939/ctas2019.02.025 | |
dc.relation.uri | https://doi.org/10.32434/0321-4095-2020-131-4-5-15 | |
dc.relation.uri | https://doi.org/10.32434/0321-4095-2019-124-3-74-82 | |
dc.relation.uri | https://doi.org/10.1149/2.1551706jes | |
dc.relation.uri | https://doi.org/10.1002/celc.201600214 | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2020.123626 | |
dc.relation.uri | https://doi.org/10.3390/ijms24043836 | |
dc.relation.uri | https://doi.org/10.1149/1945-7111/ab679e | |
dc.relation.uri | https://doi.org/10.1007/s10800-013-0563-0 | |
dc.relation.uri | https://doi.org/10.1007/s10854-016-6281-8 | |
dc.relation.uri | https://doi.org/10.1039/d2ma00188h | |
dc.relation.uri | https://doi.org/10.1007/s11003-021-00480-y | |
dc.relation.uri | https://doi.org/10.3390/nano8100756 | |
dc.relation.uri | https://doi.org/10.1002/admi.201900516 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.ijhydene.2015.03.122 | |
dc.relation.uri | https://doi.org/10.1021/acs.chemrev.8b00705 | |
dc.relation.uri | https://doi.org/10.1021/ja3010978 | |
dc.relation.uri | https://doi.org/10.1038/s41598-023-35869-z | |
dc.relation.uri | https://doi.org/10.1039/c3ta10706j | |
dc.relation.uri | https://doi.org/10.1021/jp112128g | |
dc.relation.uri | http://dx.doi.org/10.1155/2016/2127980 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | пористі метали | |
dc.subject | піна | |
dc.subject | нанодендрит | |
dc.subject | гальванічна заміна | |
dc.subject | металеві наночастинки | |
dc.subject | наноструктури | |
dc.subject | поверхні нікелю та міді | |
dc.subject | porous metals | |
dc.subject | foam | |
dc.subject | nanodendrite | |
dc.subject | galvanic replacement | |
dc.subject | metal nanoparticles | |
dc.subject | nanostructures | |
dc.subject | nickel and copper surfaces | |
dc.title | Decoration of 3D nickel and copper surfaces with metallic nanoparticles and nanostructures by galvanic replacement. Minireview | |
dc.title.alternative | Декорування 3D поверхні нікелю та міді металевими наночастинками та наноструктурами гальванічним заміщенням. Мініогляд | |
dc.type | Article |
Files
License bundle
1 - 1 of 1