Study on microstructure characterization of fracture frontier of post welds heat treatment and type IV cracking of P92 steel welded joinT

dc.citation.epage32
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage1
dc.contributor.affiliationSam Higginbottom University of Agriculture, Technology And Sciences Allahabad
dc.contributor.authorPal, Vinay Kumar
dc.contributor.authorSingh, Lokendra Pal
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-15T06:38:01Z
dc.date.available2023-09-15T06:38:01Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractIn the research work presented in this study microstructure evolution at fracture frontier of crept P92 weld, creep rupture life and effect of creep exposure time on microstructure evolution in fine-grained heat affected zone were performed. Microstructure evolution and creep rupture behavior of metal arc welded joint of P92 steel plate in the as-welded have been studied. The different states of post weld heat treatment (PWHT). (i). post welded heat treatment at 760 °C for the 2h (ii). re-austenitizing at 1040 °C for 60 min and air cooled and tempering at 760 °C for 2h. In PWHT condition, most common type IV cracking was observed creep exposure 620 °C / 150 MPa. The martensitic matrix fracture is also observed in PWNT 1 condition. A move away from the fracture frontier, the cavities still remain in the microstructure while the martensitic matrix fracture is difficult to observe. The line mapping also confirmed the increase in weight percentage of Cr and Mo in M23C6. The elemental mapping of PWHT 2 condition is also carried out in FGHAZ which confirm the formation of Mo and Cr-rich M23C6 precipitates.
dc.format.extent1-32
dc.format.pages32
dc.identifier.citationPal V. K. Study on microstructure characterization of fracture frontier of post welds heat treatment and type IV cracking of P92 steel welded joinT / Vinay Kumar Pal, Lokendra Pal Singh // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 2. — P. 1–32.
dc.identifier.citationenPal V. K. Study on microstructure characterization of fracture frontier of post welds heat treatment and type IV cracking of P92 steel welded joinT / Vinay Kumar Pal, Lokendra Pal Singh // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 2. — P. 1–32.
dc.identifier.doidoi.org/10.23939/10.23939/ujmems2022.02.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60083
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 2 (8), 2022
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 2 (8), 2022
dc.relation.references[1] R. B. Brucker, W. M. Elger, M. J. Sorek, M. S. Group, M. Engineer-, R. B. Brucker, W. M. Elger, Microstructure-thermal history correlations for HY-130 thick section weldments, Weld. J. 63 (1984) 254–262.
dc.relation.references[2] K. Laha, K. S. Chandravathi, P. Parameswaran, K. B. S. Rao, S. L. Mannan, Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking, Metall. Mater. Trans. A. 38 (2007) 58–68. https://doi.org/10.1007/s11661-006-9050-0.
dc.relation.references[3] Y. Tsuchida, K. Okamoto, Y. Tokunaga, Study of creep rupture strength in heat affected zone of 9Cr-1Mo-V-Nb-N steel by welding thermal cycle simulation, Weld. Int. 10 (1996) 454–460. https://doi.org/10.1080/09507119609549030.
dc.relation.references[4] D. J. Abson, J. S. Rothwell, Review of type IV cracking of weldments in 9–12 % Cr creep strength enhanced ferritic steels, Int. Mater. Rev. 58 (2013) 437–473. https://doi.org/10.1179/1743280412Y.0000000016.
dc.relation.references[5] M. E. A. El-azim, A. M. Nasreldin, G. Zies, A. Klenk, Microstructural instability of a welded joint in P91 steel during creep at 600 u C, Mater. Sci. Technol. 21 (2005) 779–791. https://doi.org/10.1179/174328405X43216.
dc.relation.references[6] S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Microstructural investigations on type IV cracking in a high Cr steel, ISIJ Int. 42 (2002) 1497–1504.
dc.relation.references[7] T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, T. Tanabe, Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing Type IV fracture, Int. J. Press. Vessel. Pip. 83 (2006) 63–71. https://doi.org/10.1016/j.jelectrocard.2005.07.009.
dc.relation.references[8] S. K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, M. Matsui, Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel, Sci. Technol. Weld. Join. 10 (2005) 149–157. https://doi.org/10.1179/174329305X36034.
dc.relation.references[9] F. Abe, M. Tabuchi, F. Abe, M. Tabuchi, Microstructure and creep strength of welds in advanced ferritic power plant steels, Sci. Technol. Weld. Join. 9 (2004) 22–30. https://doi.org/10.1179/136217104225017107.
dc.relation.references[10] J. A. Francis, W. Mazur, H.K.D.H. Bhadeshia, Estimation of Type IV Cracking Tendency in Power Plant Steels, ISIJ Int. 44 (2004) 1966–1968.
dc.relation.references[11] K. Shinozaki, D. Li, H. Kuroki, H. Harada, K. Ohishi, T. Sato, Observation of type IV cracking in welded joints of high chromium ferritic heat resistant steels, Sci. Technol. Weld. Join. 8 (2003) 289–295. https://doi.org/10.1179/136217103225005444.
dc.relation.references[12] M. E. Abd El-Azim, O. E. El-Desoky, H. Ruoff, F. Kauffmann, E. Roos, Creep fracture mechanism in welded joints of P91 steel, Mater. Sci. Technol. 29 (2013) 1027–1033. https://doi.org/10.1179/1743284713Y.0000000233.
dc.relation.references[13] S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Variation in the type IV cracking behaviour of a high Cr steel weld with post weld heat treatment, Int. J. Press. Vessel. Pip. 80 (2003) 405–413. https://doi.org/10.1016/S0308-0161(03)00072-3.
dc.relation.references[14] K. Sawada, M. Bauer, F. Kauffmann, P. Mayr, A. Klenk, Microstructural change of 9 % Cr-welded joints after long-term creep, Mater. Sci. Eng. A. 527 (2010) 1417–1426. https://doi.org/10.1016/j.msea.2009.10.044.
dc.relation.references[15] T. Sato, K. Tamura, K. Mitsuhata, R. Ikura, Improvement of creep rupture strength of 9Cr1MoNbV welded joints by post weld normalizing and tempering, in: 5th Int. Conf. Adv. Mater. Technol., 2008: pp. 1–10.
dc.relation.references[16] M. Dewitte, C. Coussement, Creep properties of 12 % Cr and improved 9 % Cr weldments, Mater. High Temp. 9 (1991) 178–184. https://doi.org/10.1080/09603409.1991.11689658.
dc.relation.references[17] J. A. Francis, G.M.D. Cantin, W. Mazur, H.K.D.H. Bhadeshia, G.M.D. Cantin, W. Mazur, H.K.D.H. Bhadeshia, J.A. Francis, G.M.D. Cantin, W. Mazur, H.K.D.H. Bhadeshia, Effects of weld preheat temperature and heat input on type IV failure, Sci. Technol. Weld. Join. 14 (2009) 436–442. https://doi.org/10.1179/136217109X415884.
dc.relation.references[18] M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, F. Abe, M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, F. Abe, Suppressing type IV failure via modification of heat affected zone microstructures using high boron content in 9Cr heat resistant steel welded joints, Sci. Technol. Weld. Join. ISSN. 11 (2006) 216–223. https://doi.org/10.1179/174329306X89260.
dc.relation.references[19] V. L. Manugula, K. V. Rajulapati, G. M. Reddy, K.B.S. Rao, Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states, Mater. Sci. Eng. A. 698 (2017) 36–45. https://doi.org/10.1016/j.msea.2017.05.036.
dc.relation.references[20] William F. Newell JR., Welding and postweld heat treatment of P91 steels, Weld. J. 89 (2010) 33–36.
dc.relation.references[21] M. Yamazaki, T. Watanabe, H. Hongo, M. Tabuchi, Creep rupture properties of welded joints of heat resistant steels, Challenges Power Eng. Environ. (2007) 1044–1048. https://doi.org/10.1299/jpes.2.1140.
dc.relation.references[22] O. D. Sherby, E. M. Taleff, Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids, Mater. Sci. Eng. A. 322 (2002) 89–99. https://doi.org/10.1016/S0921-5093(01)01121-2.
dc.relation.references[23] V. Dudko, A. Belyakov, D. Molodov, R. Kaibyshev, Microstructure evolution and pinning of boundaries by precipitates in a 9 pct Cr heat resistant steel during creep, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013). https://doi.org/10.1007/s11661-011-0899-1.
dc.relation.references[24] F. Abe, Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels, Mater. Sci. Eng. A. 319–321 (2001) 770–773. https://doi.org/10.1016/S0921-5093(00)02002-5.
dc.relation.references[25] T. Sakthivel, S.P. Selvi, K. Laha, An assessment of creep deformation and rupture behaviour of 9Cr-1.8W-0.5Mo-VNb (ASME grade 92) steel, Mater. Sci. Eng. A. 640 (2015) 61–71. https://doi.org/10.1016/j.msea.2015.05.068.
dc.relation.references[26] J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel, Mater. Sci. Eng. A. 627 (2015) 230–240. https://doi.org/10.1016/j.msea.2015.01.006.
dc.relation.references[27] M. I. Isik, A. Kostka, G. Eggeler, On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels, Acta Mater. 81 (2014) 230–240. https://doi.org/10.1016/j.actamat.2014.08.008.
dc.relation.references[28] W. Liu, X. Liu, F. Lu, X. Tang, H. Cui, Y. Gao, Creep behavior and microstructure evaluation of welded joint in dissimilar modified 9Cr-1Mo steels, Mater. Sci. Eng. A. 644 (2015) 337–346. https://doi.org/10.1016/j.msea.2015.07.068.
dc.relation.references[29] K. Shinozaki, D.-J. Li, H. Kuroki, H. Harada, K. Ohishi, Analysis of Degradation of Creep Strength in Heat-affected Zone of Weldment of High Cr Heat-resisting Steels Based on Void Observation., ISIJ Int. 42 (2002) 1578–1584. https://doi.org/10.2355/isijinternational.42.1578.
dc.relation.references[30] K. Miyahara, J. H. Hwang, Y. Shimoide, Aging phenomena before the precipitation of the bulky laves phase in Fe-10 %Cr ferritic alloys, Scr. Metall. Mater. 32 (1995) 1917–1921. https://doi.org/10.1016/0956-716X(95)00086-B.
dc.relation.references[31] X Z. Zhang, X. J. Wu, R. Liu, J. Liu, M. X. Yao, Influence of Laves phase on creep strength of modified 9Cr-1Mo steel, Mater. Sci. Eng. A. 706 (2017) 279–286. https://doi.org/10.1016/j.msea.2017.08.111.
dc.relation.referencesen[1] R. B. Brucker, W. M. Elger, M. J. Sorek, M. S. Group, M. Engineer-, R. B. Brucker, W. M. Elger, Microstructure-thermal history correlations for HY-130 thick section weldments, Weld. J. 63 (1984) 254–262.
dc.relation.referencesen[2] K. Laha, K. S. Chandravathi, P. Parameswaran, K. B. S. Rao, S. L. Mannan, Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking, Metall. Mater. Trans. A. 38 (2007) 58–68. https://doi.org/10.1007/s11661-006-9050-0.
dc.relation.referencesen[3] Y. Tsuchida, K. Okamoto, Y. Tokunaga, Study of creep rupture strength in heat affected zone of 9Cr-1Mo-V-Nb-N steel by welding thermal cycle simulation, Weld. Int. 10 (1996) 454–460. https://doi.org/10.1080/09507119609549030.
dc.relation.referencesen[4] D. J. Abson, J. S. Rothwell, Review of type IV cracking of weldments in 9–12 % Cr creep strength enhanced ferritic steels, Int. Mater. Rev. 58 (2013) 437–473. https://doi.org/10.1179/1743280412Y.0000000016.
dc.relation.referencesen[5] M. E. A. El-azim, A. M. Nasreldin, G. Zies, A. Klenk, Microstructural instability of a welded joint in P91 steel during creep at 600 u C, Mater. Sci. Technol. 21 (2005) 779–791. https://doi.org/10.1179/174328405X43216.
dc.relation.referencesen[6] S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Microstructural investigations on type IV cracking in a high Cr steel, ISIJ Int. 42 (2002) 1497–1504.
dc.relation.referencesen[7] T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, T. Tanabe, Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing Type IV fracture, Int. J. Press. Vessel. Pip. 83 (2006) 63–71. https://doi.org/10.1016/j.jelectrocard.2005.07.009.
dc.relation.referencesen[8] S. K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, M. Matsui, Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel, Sci. Technol. Weld. Join. 10 (2005) 149–157. https://doi.org/10.1179/174329305X36034.
dc.relation.referencesen[9] F. Abe, M. Tabuchi, F. Abe, M. Tabuchi, Microstructure and creep strength of welds in advanced ferritic power plant steels, Sci. Technol. Weld. Join. 9 (2004) 22–30. https://doi.org/10.1179/136217104225017107.
dc.relation.referencesen[10] J. A. Francis, W. Mazur, H.K.D.H. Bhadeshia, Estimation of Type IV Cracking Tendency in Power Plant Steels, ISIJ Int. 44 (2004) 1966–1968.
dc.relation.referencesen[11] K. Shinozaki, D. Li, H. Kuroki, H. Harada, K. Ohishi, T. Sato, Observation of type IV cracking in welded joints of high chromium ferritic heat resistant steels, Sci. Technol. Weld. Join. 8 (2003) 289–295. https://doi.org/10.1179/136217103225005444.
dc.relation.referencesen[12] M. E. Abd El-Azim, O. E. El-Desoky, H. Ruoff, F. Kauffmann, E. Roos, Creep fracture mechanism in welded joints of P91 steel, Mater. Sci. Technol. 29 (2013) 1027–1033. https://doi.org/10.1179/1743284713Y.0000000233.
dc.relation.referencesen[13] S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Variation in the type IV cracking behaviour of a high Cr steel weld with post weld heat treatment, Int. J. Press. Vessel. Pip. 80 (2003) 405–413. https://doi.org/10.1016/S0308-0161(03)00072-3.
dc.relation.referencesen[14] K. Sawada, M. Bauer, F. Kauffmann, P. Mayr, A. Klenk, Microstructural change of 9 % Cr-welded joints after long-term creep, Mater. Sci. Eng. A. 527 (2010) 1417–1426. https://doi.org/10.1016/j.msea.2009.10.044.
dc.relation.referencesen[15] T. Sato, K. Tamura, K. Mitsuhata, R. Ikura, Improvement of creep rupture strength of 9Cr1MoNbV welded joints by post weld normalizing and tempering, in: 5th Int. Conf. Adv. Mater. Technol., 2008: pp. 1–10.
dc.relation.referencesen[16] M. Dewitte, C. Coussement, Creep properties of 12 % Cr and improved 9 % Cr weldments, Mater. High Temp. 9 (1991) 178–184. https://doi.org/10.1080/09603409.1991.11689658.
dc.relation.referencesen[17] J. A. Francis, G.M.D. Cantin, W. Mazur, H.K.D.H. Bhadeshia, G.M.D. Cantin, W. Mazur, H.K.D.H. Bhadeshia, J.A. Francis, G.M.D. Cantin, W. Mazur, H.K.D.H. Bhadeshia, Effects of weld preheat temperature and heat input on type IV failure, Sci. Technol. Weld. Join. 14 (2009) 436–442. https://doi.org/10.1179/136217109X415884.
dc.relation.referencesen[18] M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, F. Abe, M. Kondo, M. Tabuchi, S. Tsukamoto, F. Yin, F. Abe, Suppressing type IV failure via modification of heat affected zone microstructures using high boron content in 9Cr heat resistant steel welded joints, Sci. Technol. Weld. Join. ISSN. 11 (2006) 216–223. https://doi.org/10.1179/174329306X89260.
dc.relation.referencesen[19] V. L. Manugula, K. V. Rajulapati, G. M. Reddy, K.B.S. Rao, Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states, Mater. Sci. Eng. A. 698 (2017) 36–45. https://doi.org/10.1016/j.msea.2017.05.036.
dc.relation.referencesen[20] William F. Newell JR., Welding and postweld heat treatment of P91 steels, Weld. J. 89 (2010) 33–36.
dc.relation.referencesen[21] M. Yamazaki, T. Watanabe, H. Hongo, M. Tabuchi, Creep rupture properties of welded joints of heat resistant steels, Challenges Power Eng. Environ. (2007) 1044–1048. https://doi.org/10.1299/jpes.2.1140.
dc.relation.referencesen[22] O. D. Sherby, E. M. Taleff, Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids, Mater. Sci. Eng. A. 322 (2002) 89–99. https://doi.org/10.1016/S0921-5093(01)01121-2.
dc.relation.referencesen[23] V. Dudko, A. Belyakov, D. Molodov, R. Kaibyshev, Microstructure evolution and pinning of boundaries by precipitates in a 9 pct Cr heat resistant steel during creep, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013). https://doi.org/10.1007/s11661-011-0899-1.
dc.relation.referencesen[24] F. Abe, Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels, Mater. Sci. Eng. A. 319–321 (2001) 770–773. https://doi.org/10.1016/S0921-5093(00)02002-5.
dc.relation.referencesen[25] T. Sakthivel, S.P. Selvi, K. Laha, An assessment of creep deformation and rupture behaviour of 9Cr-1.8W-0.5Mo-VNb (ASME grade 92) steel, Mater. Sci. Eng. A. 640 (2015) 61–71. https://doi.org/10.1016/j.msea.2015.05.068.
dc.relation.referencesen[26] J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel, Mater. Sci. Eng. A. 627 (2015) 230–240. https://doi.org/10.1016/j.msea.2015.01.006.
dc.relation.referencesen[27] M. I. Isik, A. Kostka, G. Eggeler, On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels, Acta Mater. 81 (2014) 230–240. https://doi.org/10.1016/j.actamat.2014.08.008.
dc.relation.referencesen[28] W. Liu, X. Liu, F. Lu, X. Tang, H. Cui, Y. Gao, Creep behavior and microstructure evaluation of welded joint in dissimilar modified 9Cr-1Mo steels, Mater. Sci. Eng. A. 644 (2015) 337–346. https://doi.org/10.1016/j.msea.2015.07.068.
dc.relation.referencesen[29] K. Shinozaki, D.-J. Li, H. Kuroki, H. Harada, K. Ohishi, Analysis of Degradation of Creep Strength in Heat-affected Zone of Weldment of High Cr Heat-resisting Steels Based on Void Observation., ISIJ Int. 42 (2002) 1578–1584. https://doi.org/10.2355/isijinternational.42.1578.
dc.relation.referencesen[30] K. Miyahara, J. H. Hwang, Y. Shimoide, Aging phenomena before the precipitation of the bulky laves phase in Fe-10 %Cr ferritic alloys, Scr. Metall. Mater. 32 (1995) 1917–1921. https://doi.org/10.1016/0956-716X(95)00086-B.
dc.relation.referencesen[31] X Z. Zhang, X. J. Wu, R. Liu, J. Liu, M. X. Yao, Influence of Laves phase on creep strength of modified 9Cr-1Mo steel, Mater. Sci. Eng. A. 706 (2017) 279–286. https://doi.org/10.1016/j.msea.2017.08.111.
dc.relation.urihttps://doi.org/10.1007/s11661-006-9050-0
dc.relation.urihttps://doi.org/10.1080/09507119609549030
dc.relation.urihttps://doi.org/10.1179/1743280412Y.0000000016
dc.relation.urihttps://doi.org/10.1179/174328405X43216
dc.relation.urihttps://doi.org/10.1016/j.jelectrocard.2005.07.009
dc.relation.urihttps://doi.org/10.1179/174329305X36034
dc.relation.urihttps://doi.org/10.1179/136217104225017107
dc.relation.urihttps://doi.org/10.1179/136217103225005444
dc.relation.urihttps://doi.org/10.1179/1743284713Y.0000000233
dc.relation.urihttps://doi.org/10.1016/S0308-0161(03)00072-3
dc.relation.urihttps://doi.org/10.1016/j.msea.2009.10.044
dc.relation.urihttps://doi.org/10.1080/09603409.1991.11689658
dc.relation.urihttps://doi.org/10.1179/136217109X415884
dc.relation.urihttps://doi.org/10.1179/174329306X89260
dc.relation.urihttps://doi.org/10.1016/j.msea.2017.05.036
dc.relation.urihttps://doi.org/10.1299/jpes.2.1140
dc.relation.urihttps://doi.org/10.1016/S0921-5093(01)01121-2
dc.relation.urihttps://doi.org/10.1007/s11661-011-0899-1
dc.relation.urihttps://doi.org/10.1016/S0921-5093(00)02002-5
dc.relation.urihttps://doi.org/10.1016/j.msea.2015.05.068
dc.relation.urihttps://doi.org/10.1016/j.msea.2015.01.006
dc.relation.urihttps://doi.org/10.1016/j.actamat.2014.08.008
dc.relation.urihttps://doi.org/10.1016/j.msea.2015.07.068
dc.relation.urihttps://doi.org/10.2355/isijinternational.42.1578
dc.relation.urihttps://doi.org/10.1016/0956-716X(95)00086-B
dc.relation.urihttps://doi.org/10.1016/j.msea.2017.08.111
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Pal V., Sing L., 2022
dc.subjectleaves phase
dc.subjectPWHT
dc.subjectfracture frontier
dc.subjectP92 Steel
dc.subjectelement mapping
dc.subjectcreep rupture
dc.subjectmicrostructure
dc.titleStudy on microstructure characterization of fracture frontier of post welds heat treatment and type IV cracking of P92 steel welded joinT
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v8n2_Pal_V_K-Study_on_microstructure_characterization_1-32.pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v8n2_Pal_V_K-Study_on_microstructure_characterization_1-32__COVER.png
Size:
498.95 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: