Термодинамічні властивості 5-(2-нітрофеніл)фуран-2-карбальдегіду та його похідних у конденсованому стані
dc.citation.epage | 6 | |
dc.citation.issue | 2 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний університет імені Івана Франка | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Собечко, І. Б. | |
dc.contributor.author | Горак, Ю. І. | |
dc.contributor.author | Дібрівний, В. М. | |
dc.contributor.author | Гошко, Л. В. | |
dc.contributor.author | Sobechko, I. B. | |
dc.contributor.author | Gorak, Yu. I. | |
dc.contributor.author | Dibrivnyi, V. M. | |
dc.contributor.author | Goshko, L. V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T07:35:20Z | |
dc.date.available | 2024-01-22T07:35:20Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | З використанням прецизійного бомбового калориметра спалювання В-08-МА експери- ментально визначено енергії згорання 5-(2-нітрофеніл)-фуран-2-карбальдегіду, 5-(2-нітро-4- метилфеніл)-фуран-2-карбальдегіду та 5-(2-нітро-4-оксиметилфеніл)-фуран-2-карбальдегіду. На основі отриманих даних розраховані величини ентальпій згорання та утворення речовин у конденсованому стані. Наведено порівняльний аналіз експериментально визначених величин з теоретично розрахованими величинами за адитивними методами розрахунку. | |
dc.description.abstract | Using the precision bomb combustion calorimeter B-08-MA, the combustion energies of 5- (2-nitrophenyl) - furan-2-carbaldehyde, 5-(2-nitro-4-methylphenyl)-furan-2-carbaldehyde and 5-(2-nitro-4-oxymethylphenyl) - furan-2-carbaldehyde. Based on the obtained data, the values of enthalpies of combustion and formation of substances in the condensed state are calculated. A comparative analysis of experimentally determined values with theoretically calculated values by additive calculation methods is given. | |
dc.format.extent | 1-6 | |
dc.format.pages | 6 | |
dc.identifier.citation | Термодинамічні властивості 5-(2-нітрофеніл)фуран-2-карбальдегіду та його похідних у конденсованому стані / І. Б. Собечко, Ю. І. Горак, В. М. Дібрівний, Л. В. Гошко // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 1–6. | |
dc.identifier.citationen | Thermodynamic properties of 5-(2-nitrophenyl) furan-2-carbaldehyde and it’s derivatives in a condensed state / I. B. Sobechko, Yu. I. Gorak, V. M. Dibrivnyi, L. V. Goshko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 1–6. | |
dc.identifier.doi | doi.org/1 10.23939/ctas2020.02.001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60805 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (3), 2020 | |
dc.relation.references | 1. Gandini A., Belgacem M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203–1379. | |
dc.relation.references | 2. Karateev A., Koryagin A., Litvinov D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23. | |
dc.relation.references | 3. Neuhaus W. C., Jemison А., Kozlowski M. (2019) Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1-7. doi: 10.1021/acscatal.9b02608. | |
dc.relation.references | 4. Yunzhu Wang, Shinya Furukawa, Xinpu Fu, and Ning Yan. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1-97. doi: 10.1021/acscatal.9b03744. | |
dc.relation.references | 5. Khallouk K., Solhy A., Kherbeche A., et al. (2020). Effective catalytic delignification and fractionation of lignocellulosic biomass in water over Zn3V2O8 mixed oxide. ACS Omega 5 (1)., 304–316. doi: 10.1021/acsomega.9b02159 | |
dc.relation.references | 6. Holla B. S., Akberali P. M, Shivananda M. K. (2000) Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55 (4) 256–263. | |
dc.relation.references | 7. Subrahmanya Κ. B., Shivarama Β. H. (2003) Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2-carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications. 6 (6), 625–628. doi: 10.1515/hc.2003.9.6.625 | |
dc.relation.references | 8. Darren R. Williams, Myung-Ryul Lee, Young-Ah Song, et al. (2007) Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. Soc. 129(30) (9258–9259. | |
dc.relation.references | 9. Moya-Garzón M. D., Higueras M, Peñalver C., et al. (2018) Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J. Med. Chem. 61, 7144–7167. doi:10.1021/acs.jmedchem.8b00399 | |
dc.relation.references | 10. Denton, T. T., Srivastava, P., Xia, Z., et al. (2018). Identification of the 4-position of 3-alkynyl and 3-heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. J. Med. Chem. 61, 7065–7086. doi: 10.1021/acs.jmedchem.8b00084. | |
dc.relation.references | 11. Joseph L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett. 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2. | |
dc.relation.references | 12. Meng Chen, Qingsong Yu, Hongmin Sun (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci 14 (9), 18488–18501. doi:10.3390/ijms 140918488. | |
dc.relation.references | 13. Kos R., Sobechko I., Horak Y., Sergeev V., Dibrivnyi V. (2017) Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research. 2 (2), 74–80. doi::10.22606/mocr.2017.22006 | |
dc.relation.references | 14. Dibrivnyi V., Sobechko I., Puniak M., et al. (2015) Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal. 9:67. 1-8. doi: 10.1186/s13065-015-0144-x. | |
dc.relation.references | 15. Dibrivnyi V., Marshalek A., Sobechko I., et al. (2019) Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry. 105. 1–11. doi: 10.1186/s13065-019-0619-2 | |
dc.relation.references | 16. CODATA Recommended key values for thermodynamics. J. Chem. Thermodynamics. (1978) 10, 903. | |
dc.relation.references | 17. Cohen N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbon–hydrogen and carbon–hydrogen–oxygen compounds. Journal of Physical and Chemical Reference Data 25 (6), 1411–1481. doi: 10.1063/1.555988. | |
dc.relation.references | 18. Domalski E. S., Hearinga E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data 22 (4), 805–1159. | |
dc.relation.references | 19. Salmon А., Dalmazzone D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions. Part 2: Carbon-hydrogen, carbon-hydrogen- oxygen, and carbon-hydrogen-nitrogenoxygen compounds Journal of Physical and Chemical Reference Data 36 (1), 19–58. doi:10.1063/1.2435401 | |
dc.relation.referencesen | 1. Gandini A., Belgacem M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203–1379. | |
dc.relation.referencesen | 2. Karateev A., Koryagin A., Litvinov D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23. | |
dc.relation.referencesen | 3. Neuhaus W. C., Jemison A., Kozlowski M. (2019) Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1-7. doi: 10.1021/acscatal.9b02608. | |
dc.relation.referencesen | 4. Yunzhu Wang, Shinya Furukawa, Xinpu Fu, and Ning Yan. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1-97. doi: 10.1021/acscatal.9b03744. | |
dc.relation.referencesen | 5. Khallouk K., Solhy A., Kherbeche A., et al. (2020). Effective catalytic delignification and fractionation of lignocellulosic biomass in water over Zn3V2O8 mixed oxide. ACS Omega 5 (1)., 304–316. doi: 10.1021/acsomega.9b02159 | |
dc.relation.referencesen | 6. Holla B. S., Akberali P. M, Shivananda M. K. (2000) Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55 (4) 256–263. | |
dc.relation.referencesen | 7. Subrahmanya K. B., Shivarama B. H. (2003) Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2-carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications. 6 (6), 625–628. doi: 10.1515/hc.2003.9.6.625 | |
dc.relation.referencesen | 8. Darren R. Williams, Myung-Ryul Lee, Young-Ah Song, et al. (2007) Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. Soc. 129(30) (9258–9259. | |
dc.relation.referencesen | 9. Moya-Garzón M. D., Higueras M, Peñalver C., et al. (2018) Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J. Med. Chem. 61, 7144–7167. doi:10.1021/acs.jmedchem.8b00399 | |
dc.relation.referencesen | 10. Denton, T. T., Srivastava, P., Xia, Z., et al. (2018). Identification of the 4-position of 3-alkynyl and 3-heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. J. Med. Chem. 61, 7065–7086. doi: 10.1021/acs.jmedchem.8b00084. | |
dc.relation.referencesen | 11. Joseph L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett. 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2. | |
dc.relation.referencesen | 12. Meng Chen, Qingsong Yu, Hongmin Sun (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci 14 (9), 18488–18501. doi:10.3390/ijms 140918488. | |
dc.relation.referencesen | 13. Kos R., Sobechko I., Horak Y., Sergeev V., Dibrivnyi V. (2017) Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research. 2 (2), 74–80. doi::10.22606/mocr.2017.22006 | |
dc.relation.referencesen | 14. Dibrivnyi V., Sobechko I., Puniak M., et al. (2015) Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal. 9:67. 1-8. doi: 10.1186/s13065-015-0144-x. | |
dc.relation.referencesen | 15. Dibrivnyi V., Marshalek A., Sobechko I., et al. (2019) Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry. 105. 1–11. doi: 10.1186/s13065-019-0619-2 | |
dc.relation.referencesen | 16. CODATA Recommended key values for thermodynamics. J. Chem. Thermodynamics. (1978) 10, 903. | |
dc.relation.referencesen | 17. Cohen N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbon–hydrogen and carbon–hydrogen–oxygen compounds. Journal of Physical and Chemical Reference Data 25 (6), 1411–1481. doi: 10.1063/1.555988. | |
dc.relation.referencesen | 18. Domalski E. S., Hearinga E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data 22 (4), 805–1159. | |
dc.relation.referencesen | 19. Salmon A., Dalmazzone D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions. Part 2: Carbon-hydrogen, carbon-hydrogen- oxygen, and carbon-hydrogen-nitrogenoxygen compounds Journal of Physical and Chemical Reference Data 36 (1), 19–58. doi:10.1063/1.2435401 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.subject | 5-(2-нітрофеніл)-фуран-2-карбальдегід | |
dc.subject | 5-(2-нітро-4-метилфеніл)-фуран-2- карбальдегід | |
dc.subject | 5-(2-нітро-4-оксиметилфеніл)-фуран-2-карбальдегід | |
dc.subject | енергія згорання | |
dc.subject | ентальпія згорання | |
dc.subject | ентальпія утворення | |
dc.subject | 5- (2-nitrophenyl) -furan-2-carbaldehyde | |
dc.subject | 5- (2-nitro-4-methylphenyl) -furan-2-carbaldehyde | |
dc.subject | 5-(2-nitro-4-oxymethylphenyl) -furan-2 -carbaldehyde | |
dc.subject | combustion energy | |
dc.subject | enthalpy of combustion | |
dc.subject | enthalpy of formation | |
dc.title | Термодинамічні властивості 5-(2-нітрофеніл)фуран-2-карбальдегіду та його похідних у конденсованому стані | |
dc.title.alternative | Thermodynamic properties of 5-(2-nitrophenyl) furan-2-carbaldehyde and it’s derivatives in a condensed state | |
dc.type | Article |
Files
License bundle
1 - 1 of 1