Термодинамічні властивості 5-(2-нітрофеніл)фуран-2-карбальдегіду та його похідних у конденсованому стані

dc.citation.epage6
dc.citation.issue2
dc.citation.spage1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет імені Івана Франка
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorСобечко, І. Б.
dc.contributor.authorГорак, Ю. І.
dc.contributor.authorДібрівний, В. М.
dc.contributor.authorГошко, Л. В.
dc.contributor.authorSobechko, I. B.
dc.contributor.authorGorak, Yu. I.
dc.contributor.authorDibrivnyi, V. M.
dc.contributor.authorGoshko, L. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T07:35:20Z
dc.date.available2024-01-22T07:35:20Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractЗ використанням прецизійного бомбового калориметра спалювання В-08-МА експери- ментально визначено енергії згорання 5-(2-нітрофеніл)-фуран-2-карбальдегіду, 5-(2-нітро-4- метилфеніл)-фуран-2-карбальдегіду та 5-(2-нітро-4-оксиметилфеніл)-фуран-2-карбальдегіду. На основі отриманих даних розраховані величини ентальпій згорання та утворення речовин у конденсованому стані. Наведено порівняльний аналіз експериментально визначених величин з теоретично розрахованими величинами за адитивними методами розрахунку.
dc.description.abstractUsing the precision bomb combustion calorimeter B-08-MA, the combustion energies of 5- (2-nitrophenyl) - furan-2-carbaldehyde, 5-(2-nitro-4-methylphenyl)-furan-2-carbaldehyde and 5-(2-nitro-4-oxymethylphenyl) - furan-2-carbaldehyde. Based on the obtained data, the values of enthalpies of combustion and formation of substances in the condensed state are calculated. A comparative analysis of experimentally determined values with theoretically calculated values by additive calculation methods is given.
dc.format.extent1-6
dc.format.pages6
dc.identifier.citationТермодинамічні властивості 5-(2-нітрофеніл)фуран-2-карбальдегіду та його похідних у конденсованому стані / І. Б. Собечко, Ю. І. Горак, В. М. Дібрівний, Л. В. Гошко // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 1–6.
dc.identifier.citationenThermodynamic properties of 5-(2-nitrophenyl) furan-2-carbaldehyde and it’s derivatives in a condensed state / I. B. Sobechko, Yu. I. Gorak, V. M. Dibrivnyi, L. V. Goshko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 1–6.
dc.identifier.doidoi.org/1 10.23939/ctas2020.02.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60805
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (3), 2020
dc.relation.references1. Gandini A., Belgacem M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203–1379.
dc.relation.references2. Karateev A., Koryagin A., Litvinov D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23.
dc.relation.references3. Neuhaus W. C., Jemison А., Kozlowski M. (2019) Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1-7. doi: 10.1021/acscatal.9b02608.
dc.relation.references4. Yunzhu Wang, Shinya Furukawa, Xinpu Fu, and Ning Yan. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1-97. doi: 10.1021/acscatal.9b03744.
dc.relation.references5. Khallouk K., Solhy A., Kherbeche A., et al. (2020). Effective catalytic delignification and fractionation of lignocellulosic biomass in water over Zn3V2O8 mixed oxide. ACS Omega 5 (1)., 304–316. doi: 10.1021/acsomega.9b02159
dc.relation.references6. Holla B. S., Akberali P. M, Shivananda M. K. (2000) Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55 (4) 256–263.
dc.relation.references7. Subrahmanya Κ. B., Shivarama Β. H. (2003) Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2-carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications. 6 (6), 625–628. doi: 10.1515/hc.2003.9.6.625
dc.relation.references8. Darren R. Williams, Myung-Ryul Lee, Young-Ah Song, et al. (2007) Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. Soc. 129(30) (9258–9259.
dc.relation.references9. Moya-Garzón M. D., Higueras M, Peñalver C., et al. (2018) Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J. Med. Chem. 61, 7144–7167. doi:10.1021/acs.jmedchem.8b00399
dc.relation.references10. Denton, T. T., Srivastava, P., Xia, Z., et al. (2018). Identification of the 4-position of 3-alkynyl and 3-heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. J. Med. Chem. 61, 7065–7086. doi: 10.1021/acs.jmedchem.8b00084.
dc.relation.references11. Joseph L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett. 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2.
dc.relation.references12. Meng Chen, Qingsong Yu, Hongmin Sun (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci 14 (9), 18488–18501. doi:10.3390/ijms 140918488.
dc.relation.references13. Kos R., Sobechko I., Horak Y., Sergeev V., Dibrivnyi V. (2017) Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research. 2 (2), 74–80. doi::10.22606/mocr.2017.22006
dc.relation.references14. Dibrivnyi V., Sobechko I., Puniak M., et al. (2015) Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal. 9:67. 1-8. doi: 10.1186/s13065-015-0144-x.
dc.relation.references15. Dibrivnyi V., Marshalek A., Sobechko I., et al. (2019) Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry. 105. 1–11. doi: 10.1186/s13065-019-0619-2
dc.relation.references16. CODATA Recommended key values for thermodynamics. J. Chem. Thermodynamics. (1978) 10, 903.
dc.relation.references17. Cohen N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbon–hydrogen and carbon–hydrogen–oxygen compounds. Journal of Physical and Chemical Reference Data 25 (6), 1411–1481. doi: 10.1063/1.555988.
dc.relation.references18. Domalski E. S., Hearinga E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data 22 (4), 805–1159.
dc.relation.references19. Salmon А., Dalmazzone D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions. Part 2: Carbon-hydrogen, carbon-hydrogen- oxygen, and carbon-hydrogen-nitrogenoxygen compounds Journal of Physical and Chemical Reference Data 36 (1), 19–58. doi:10.1063/1.2435401
dc.relation.referencesen1. Gandini A., Belgacem M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203–1379.
dc.relation.referencesen2. Karateev A., Koryagin A., Litvinov D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23.
dc.relation.referencesen3. Neuhaus W. C., Jemison A., Kozlowski M. (2019) Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1-7. doi: 10.1021/acscatal.9b02608.
dc.relation.referencesen4. Yunzhu Wang, Shinya Furukawa, Xinpu Fu, and Ning Yan. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1-97. doi: 10.1021/acscatal.9b03744.
dc.relation.referencesen5. Khallouk K., Solhy A., Kherbeche A., et al. (2020). Effective catalytic delignification and fractionation of lignocellulosic biomass in water over Zn3V2O8 mixed oxide. ACS Omega 5 (1)., 304–316. doi: 10.1021/acsomega.9b02159
dc.relation.referencesen6. Holla B. S., Akberali P. M, Shivananda M. K. (2000) Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55 (4) 256–263.
dc.relation.referencesen7. Subrahmanya K. B., Shivarama B. H. (2003) Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2-carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications. 6 (6), 625–628. doi: 10.1515/hc.2003.9.6.625
dc.relation.referencesen8. Darren R. Williams, Myung-Ryul Lee, Young-Ah Song, et al. (2007) Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. Soc. 129(30) (9258–9259.
dc.relation.referencesen9. Moya-Garzón M. D., Higueras M, Peñalver C., et al. (2018) Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J. Med. Chem. 61, 7144–7167. doi:10.1021/acs.jmedchem.8b00399
dc.relation.referencesen10. Denton, T. T., Srivastava, P., Xia, Z., et al. (2018). Identification of the 4-position of 3-alkynyl and 3-heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. J. Med. Chem. 61, 7065–7086. doi: 10.1021/acs.jmedchem.8b00084.
dc.relation.referencesen11. Joseph L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett. 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2.
dc.relation.referencesen12. Meng Chen, Qingsong Yu, Hongmin Sun (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci 14 (9), 18488–18501. doi:10.3390/ijms 140918488.
dc.relation.referencesen13. Kos R., Sobechko I., Horak Y., Sergeev V., Dibrivnyi V. (2017) Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research. 2 (2), 74–80. doi::10.22606/mocr.2017.22006
dc.relation.referencesen14. Dibrivnyi V., Sobechko I., Puniak M., et al. (2015) Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal. 9:67. 1-8. doi: 10.1186/s13065-015-0144-x.
dc.relation.referencesen15. Dibrivnyi V., Marshalek A., Sobechko I., et al. (2019) Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry. 105. 1–11. doi: 10.1186/s13065-019-0619-2
dc.relation.referencesen16. CODATA Recommended key values for thermodynamics. J. Chem. Thermodynamics. (1978) 10, 903.
dc.relation.referencesen17. Cohen N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbon–hydrogen and carbon–hydrogen–oxygen compounds. Journal of Physical and Chemical Reference Data 25 (6), 1411–1481. doi: 10.1063/1.555988.
dc.relation.referencesen18. Domalski E. S., Hearinga E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data 22 (4), 805–1159.
dc.relation.referencesen19. Salmon A., Dalmazzone D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions. Part 2: Carbon-hydrogen, carbon-hydrogen- oxygen, and carbon-hydrogen-nitrogenoxygen compounds Journal of Physical and Chemical Reference Data 36 (1), 19–58. doi:10.1063/1.2435401
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subject5-(2-нітрофеніл)-фуран-2-карбальдегід
dc.subject5-(2-нітро-4-метилфеніл)-фуран-2- карбальдегід
dc.subject5-(2-нітро-4-оксиметилфеніл)-фуран-2-карбальдегід
dc.subjectенергія згорання
dc.subjectентальпія згорання
dc.subjectентальпія утворення
dc.subject5- (2-nitrophenyl) -furan-2-carbaldehyde
dc.subject5- (2-nitro-4-methylphenyl) -furan-2-carbaldehyde
dc.subject5-(2-nitro-4-oxymethylphenyl) -furan-2 -carbaldehyde
dc.subjectcombustion energy
dc.subjectenthalpy of combustion
dc.subjectenthalpy of formation
dc.titleТермодинамічні властивості 5-(2-нітрофеніл)фуран-2-карбальдегіду та його похідних у конденсованому стані
dc.title.alternativeThermodynamic properties of 5-(2-nitrophenyl) furan-2-carbaldehyde and it’s derivatives in a condensed state
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v3n2_Sobechko_I_B-Thermodynamic_properties_1-6.pdf
Size:
725.19 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v3n2_Sobechko_I_B-Thermodynamic_properties_1-6__COVER.png
Size:
438.69 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: