Сучасний стан підходів до моніторингу технічного стану лопатей вітрових турбін з використанням інформаційних технологій
dc.citation.epage | 87 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Український журнал інформаційних технологій | |
dc.citation.spage | 79 | |
dc.citation.volume | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Басалкевич, О. А. | |
dc.contributor.author | Рудавський, Д. В. | |
dc.contributor.author | Basalkevych, O. A. | |
dc.contributor.author | Rudavskyi, D. V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-04-01T11:06:04Z | |
dc.date.available | 2024-04-01T11:06:04Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Вітрова енергетика є одним із найважливіших та найперспективніших джерел екологічно чистої відновлювальної енергії. Для підвищення надійності та безпечності експлуатації вітрових турбін, а також для зниження витрат через технічне обслуговування та простої у неробочому стані, необхідно застосовувати сучасні методи моніторингу стану великогабаритних та високонавантажених деталей вітрових електростанцій з використанням інформаційних технологій. Розглянуто основні види дефектів та їхню класифікацію. Проаналізовано вплив швидкості обертання турбіни та наявності тріщини у лопаті на власні частоти коливання робочого тіла. Наведено основні види і методи неруйнівного контролю (НК). Детально розглянуто акустичний метод, оскільки він стрімко розвивається та є перспективним для галузі зеленої енергетики. На основі опрацьованої літератури подано класифікацію акустичних методів НК. Проведено аналітичний огляд публікацій, що розглядають методи НК для діагностики лопатей вітрових турбін, у тому числі з використанням безпілотних літальних апаратів (БПЛА). Для кожного з методів наведено його переваги та недоліки. Здійснено аналіз підходу до НК вітрових електричних станцій з використанням машинного навчання на основі Гаусівських процесів для прогнозування власних частот коливань однієї лопаті за статистичними даними розподілу власних частот коливання сусідніх лопатей та температури навколишнього середовища. Наведено опис повного циклу функціонування системи від збирання даних до прийняття рішення про можливу наявність дефекту в конструкції. Розглянуті підходи можуть слугувати базою для побудови нових високонадійних методів виявлення небезпечних дефектів у матеріалі лопаті на ранніх стадіях їх розвитку. | |
dc.description.abstract | Nowadays wind energy is one of the most important and promising sources of environmentally clean renewable energy. Wind turbine blades are among the most expensive components. Depending on the size, their manufacturing costs range between 10 % and 20 % of total manufacturing costs. Moreover, the size of blades has increased in recent years, leading to greater efficiency and energy production, but presenting higher failure probability. It is extremely important to avoid critical blade failures, because when damaged blades liberate, they have the potential to damage not only the turbines they were attached to, but also other turbines in their vicinity. In order to increase the reliability and safety of wind turbine operation, as well as to reduce costs due to maintenance and downtime in a non-working state, it is necessary to apply modern methods of monitoring the condition of large-sized and highly loaded parts of wind power plants using information technologies. The main types of defects and their classification are considered. The influence of the rotation speed of the turbine and the presence of a damage in the blade on the oscillation natural frequencies was analyzed. The main types and methods of non-destructive testing (NDT) are presented. The acoustic method is considered in detail, as it is rapidly developing and is promising for the field of green energy. The classification of acoustic methods of NDT is provided based on the studied literature. An analytical review of publications considering NDT methods for diagnosing wind turbine blades, including the ones which use unmanned aerial vehicles (UAVs), was conducted. The advantages and disadvantages of each method are shown. The analysis of NDT approach of wind power plants using machine learning based on Gaussian processes to predict natural frequencies of one blade based on the statistical data of the distribution of natural frequencies of neighboring blades and ambient temperature was carried out. The description of the full cycle of the system's functioning, from data collection to decision-making about the possible presence of a defect in the structure, is provided. This paper has summarized and analyzed the most important advances done in the field of NDT in the last few years. The considered approaches can serve as a basis for building new highly reliable methods for detecting dangerous defects in the blade material at the early stages of their development. | |
dc.format.extent | 79-87 | |
dc.format.pages | 9 | |
dc.identifier.citation | Басалкевич О. А. Сучасний стан підходів до моніторингу технічного стану лопатей вітрових турбін з використанням інформаційних технологій / О. А. Басалкевич, Д. В. Рудавський // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2023. — Том 5. — № 2. — С. 79–87. | |
dc.identifier.citationen | Basalkevych O. A. The modern state of approaches to monitoring the technical condition of wind turbine blades us-ing information technologies / O. A. Basalkevych, D. V. Rudavskyi // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 79–87. | |
dc.identifier.doi | doi.org/10.23939/ujit2023.02.079 | |
dc.identifier.issn | 2707-1898 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61594 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал інформаційних технологій, 2 (5), 2023 | |
dc.relation.ispartof | Ukrainian Journal of Information Technology, 2 (5), 2023 | |
dc.relation.references | [1] Rudavskyi, D. V. (2011). Residual resource of metal structural elements in Hydrogen-containing environments. Kyiv: Naukova Dumka. [in Ukrainian]. | |
dc.relation.references | [2] Andreykiv, O. Y., Pustovyi, V. M., Rudavskyi, D. V., Dolinska, I. Y., Semenov, P. O. (2017). Methods of assessing residual strength and durability of structural elements based on non-destructive testing data: Handbook. Lviv: Prostir-M [in Ukrainian]. | |
dc.relation.references | [3] Nazarchuk, Z. T., Koshoviy, V. V., Skalsky, V. R., Edited by Panasyuk, V. V. (2001). Fracture mechanics and strength of materials: Handbook. Vol. 5: Non-destructive testing and technical diagnostics. Lviv FMI [in Ukrainian]. | |
dc.relation.references | [4] Klyuev, V. V., Sosnin, F. R., Filippov V.N., Edited by Klyuev, V. V. (1996). Mechanical engineering: Encyclopedia. Vol. 3: Measurements, control and diagnostics. Mashinostroenie [in Russian]. | |
dc.relation.references | [5] Klyuev, V. V., Sosnin, F. R., Filippov V.N., Edited by Klyuev, V. V. (1995). Non-destructive testing and diagnostics: Handbook. Mashinostroenie [in Russian]. | |
dc.relation.references | [6] Aleshyn, N. P., Shcherbinskyi, V. G. (1991). Radiographic, ultrasonic and magnetic defectoscopy of metal products: Textbook for vocational schools. Vyisshaya shkola [in Russian]. | |
dc.relation.references | [7] Ermolov, I. N., Ostanin, Y. Y. (1988). Methods and tools of non-destructive quality control: Textbook for engineering and technical specialized universities. Vysshaya Shkola [in Russian]. | |
dc.relation.references | [8] Gurvich, A. K., Dovnar, B. P., Kozlov, V. B.; Edited by Gurvich A.K. (1983). Non-destructive inspection of rails during operation and repair. Transport [in Russian]. | |
dc.relation.references | [9] Shcherbinsky V.G., Feoktistov, V. A., Polevik, V. A.; Edited by Shcherbinsky, V. G. (1987). Methods of defectoscopy of welded joints. Mashinostroenie [in Russian]. | |
dc.relation.references | [10] Goncharov, I. B., Matangin, K. M. (1990). Equipment defectoscopy in the coal industry: Reference guide. Nedra [in Russian]. | |
dc.relation.references | [11] State Standard of Ukraine. DSTU 2865-94. Non-destructive testing. Terms and Definitions. (1995). | |
dc.relation.references | [12] Zolotarev, S., Vengrinovich, V., Tillack, G.-R. (1998). Finite series expansion method modified for multi-step reconstruction from limited number of projections and views // 2nd Int. Conf. on Computer Methods and Inverse Problems in Non-destructive Testing and Diagnostics, Minsk, 20-23 Oct. 1998: Proc. - Berlin: DGZFP. | |
dc.relation.references | [13] Andreykiv, A. E., Lysak, N. V. (1989) Acoustic emission method in the study of destruction processes. Kyiv: Naukova Dumka [in Russian]. | |
dc.relation.references | [14] Nazarchuk, Z. T., Skalsky, V. R. (2009). Acoustic emission diagnostics of structural elements: scientific and technical manual: In 3 volumes - Volume 1: Theoretical foundations of the acoustic emission method. Naukova Dumka [in Ukrainian]. | |
dc.relation.references | [15] Paton, B. E., Lobanov, L. M., Nedoseka, A. Y. (2003). Technical diagnostics: yesterday, today, and tomorrow. Technical Diagnostics and Non-Destructive Testing, 4, 6-10. | |
dc.relation.references | [16] Nedoseka, A. Y. (2005). Control of critical stress state using the acoustic emission method. In the World of Non-Destructive Testing, 1(27), 14-16. | |
dc.relation.references | [17] Kim, D.Y., Kim, H.-B., Jung, W.S., Lim, S., Hwang, J.-H., Park, C.-W. (2013). Visual testing system for the damaged area detection of wind power plant blade, IEEE ISR 2013, 1-5. https://doi.org/10.1109/ISR.2013.6695675 | |
dc.relation.references | [18] Poozesh, P., Baqersad, J., Niezrecki, C., Avitabile, P., Harvey, E., Yarala, R. (2017). Large-area photogrammetry based testing of wind turbine blades. Mechanical Systems and Signal Processing, 86, 98-115. https://doi.org/10.1016/j.ymssp.2016.07.021 | |
dc.relation.references | [19] Zhang, D., Burnham, K., Mcdonald, L., Macleod, C., Dobie, G., Summan, R., Pierce, G. (2017). Remote inspection of wind turbine blades using UAV with photogrammetry payload. 56th Annual British Conference of Non-Destructive Testing-NDT 2017. | |
dc.relation.references | [20] Ren, Y., Qu, F., Liu, J., Feng, J., Li, X. (2017). A universal modeling approach for wind turbine condition monitoring based on scada data. 6th Data Driven Control and Learning Systems (DDCLS), 265-269. https://doi.org/10.1109/DDCLS.2017.8068080 | |
dc.relation.references | [21] Larrañaga-Valsero, B., Smith, R.A., Tayong, R.B., Fernández-López, A., Güemes, A. (2018). Wrinkle measurement in glass-carbon hybrid laminates comparing ultrasonic techniques: A case study. Composites Part A: Applied Science and Manufacturing, 114, 225-240. https://doi.org/10.1016/j.compositesa.2018.08.014 | |
dc.relation.references | [22] Tiwari, K.A., Raisutis, R., Samaitis, V. (2017). Hybrid signal processing technique to improve the defect estimation in ultrasonic non-destructive testing of composite structures. Sensors, 17, 1-21. https://doi.org/10.3390/s17122858 | |
dc.relation.references | [23] Tiwari, K.A., Raisutis, R. (2018). Post-processing of ultrasonic signals for the analysis of defects in wind turbine blade using guided waves. The Journal of Strain Analysis for Engineering Design, 53, 546-555. https://doi.org/10.1177/0309324718772668 | |
dc.relation.references | [24] Lizaranzu, M., Lario, A., Chiminelli, A., Amenabar, I. (2015). Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Physics & Technology, 71, 113-120. https://doi.org/10.1016/j.infrared.2015.02.006 | |
dc.relation.references | [25] Hwang, S., An, Y.-K., Sohn, H. (2017). Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Engineering, 188, 225-232. https://doi.org/10.1016/j.proeng.2017.04.478 | |
dc.relation.references | [26] Garcea, S.C., Wang, Y., Withers, P.J. (2018). X-ray computed tomography of polymer composites. Composites Science and Technology, 156, 305-319. https://doi.org/10.1016/j.compscitech.2017.10.023 | |
dc.relation.references | [27] Jasinien, E., Raiutis, R., Voleiis, A., Vladiauskas, A., Mitchard, D., Amos, M. (2019). NDT of wind turbine blades using adapted ultrasonic and radiographic techniques. Insight-Non-Destructive Testing and Condition Monitoring, 51, 477-483. https://doi.org/10.1784/insi.2009.51.9.477 | |
dc.relation.references | [28] Mikkelsen, L.P. (2019). Visualizing composite materials for wind turbine blades using x-ray tomography. Abstract from Materials for Tomorrow. | |
dc.relation.references | [29] Moll, J., Simon, J., Malzer, M., Krozer, V., Pozdniakov, D., Salman, R., Durr, M., Feulner, M., Nuber, A., Friedmann, H. (2018). Radar imaging system for in-service wind turbine blades inspections: Initial results from a field installation at a 2 mw wind turbine. Progress In Electromagnetics Research, 162, 51-60. https://doi.org/10.2528/PIER18021905 | |
dc.relation.references | [30] Gómez, C., García, F., Arcos, A., Cheng, L., Kogia, M., Mohimi, A., Papaelias, M. (2017). A heuristic method for detecting and locating faults employing electromagnetic acoustic transducers. Eksploatacja i Niezawodność 2017, 19. https://doi.org/10.17531/ein.2017.4.1 | |
dc.relation.references | [31] Tang, J., Soua, S., Mares, C., Gan, T.-H. (2017). A pattern recognition approach to acoustic emission data originating from fatigue of wind turbine blades. Sensors, 17, 2507. https://doi.org/10.3390/s17112507 | |
dc.relation.references | [32] Fuentes, R., Dwyer-Joyce, R., Marshall, M., Wheals, J., Cross, E. (2020). Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling. Renewable Energy, 147, 776-797. https://doi.org/10.1016/j.renene.2019.08.019 | |
dc.relation.references | [33] Ye, Y., Ma, K., Zhou, H., Arola, D., Zhang, D. (2019). An automated shearography system for cylindrical surface inspection. Measurement, 135, 400-405. https://doi.org/10.1016/j.measurement.2018.11.085 | |
dc.relation.references | [34] Zhao, Q., Dan, X., Sun, F., Wang, Y., Wu, S., Yang, L. (2018). Digital shearography for NDT: Phase measurement technique and recent developments. Applied Sciences, 8, 2662. https://doi.org/10.3390/app8122662 | |
dc.relation.references | [35] Márquez, F.P.G., Chacón, A.- M. (2020). A Review of Non-Destructive Testing on Wind Turbines Blades. Renewable Energy, 161, 998-1010. https://doi.org/10.1016/j.renene.2020.07.145 | |
dc.relation.references | [36] Chandrasekhar, K., Stevanovic, N., Cross, E. J., Dervilis, N., Worden, K. (2021). Damage detection in operational wind turbine blades using a new approach based on machine learning. Renewable energy, 168, 1249-1264. https://doi.org/10.1016/j.renene.2020.12.119 | |
dc.relation.references | [37] Nelder, J. A., Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308 | |
dc.relation.references | [38] Eldeeb, A. E., El-Arabi, M. E., Hussein, B. A. (2020). Effect of cracks in wind turbine blades on natural frequencies during operation. Journal of engineering and applied science, 67, 1995-2012. | |
dc.relation.references | [39] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2002). Introduction to algorithms. Second edition. McGraw-Hill Book Company. | |
dc.relation.referencesen | [1] Rudavskyi, D. V. (2011). Residual resource of metal structural elements in Hydrogen-containing environments. Kyiv: Naukova Dumka. [in Ukrainian]. | |
dc.relation.referencesen | [2] Andreykiv, O. Y., Pustovyi, V. M., Rudavskyi, D. V., Dolinska, I. Y., Semenov, P. O. (2017). Methods of assessing residual strength and durability of structural elements based on non-destructive testing data: Handbook. Lviv: Prostir-M [in Ukrainian]. | |
dc.relation.referencesen | [3] Nazarchuk, Z. T., Koshoviy, V. V., Skalsky, V. R., Edited by Panasyuk, V. V. (2001). Fracture mechanics and strength of materials: Handbook. Vol. 5: Non-destructive testing and technical diagnostics. Lviv FMI [in Ukrainian]. | |
dc.relation.referencesen | [4] Klyuev, V. V., Sosnin, F. R., Filippov V.N., Edited by Klyuev, V. V. (1996). Mechanical engineering: Encyclopedia. Vol. 3: Measurements, control and diagnostics. Mashinostroenie [in Russian]. | |
dc.relation.referencesen | [5] Klyuev, V. V., Sosnin, F. R., Filippov V.N., Edited by Klyuev, V. V. (1995). Non-destructive testing and diagnostics: Handbook. Mashinostroenie [in Russian]. | |
dc.relation.referencesen | [6] Aleshyn, N. P., Shcherbinskyi, V. G. (1991). Radiographic, ultrasonic and magnetic defectoscopy of metal products: Textbook for vocational schools. Vyisshaya shkola [in Russian]. | |
dc.relation.referencesen | [7] Ermolov, I. N., Ostanin, Y. Y. (1988). Methods and tools of non-destructive quality control: Textbook for engineering and technical specialized universities. Vysshaya Shkola [in Russian]. | |
dc.relation.referencesen | [8] Gurvich, A. K., Dovnar, B. P., Kozlov, V. B.; Edited by Gurvich A.K. (1983). Non-destructive inspection of rails during operation and repair. Transport [in Russian]. | |
dc.relation.referencesen | [9] Shcherbinsky V.G., Feoktistov, V. A., Polevik, V. A.; Edited by Shcherbinsky, V. G. (1987). Methods of defectoscopy of welded joints. Mashinostroenie [in Russian]. | |
dc.relation.referencesen | [10] Goncharov, I. B., Matangin, K. M. (1990). Equipment defectoscopy in the coal industry: Reference guide. Nedra [in Russian]. | |
dc.relation.referencesen | [11] State Standard of Ukraine. DSTU 2865-94. Non-destructive testing. Terms and Definitions. (1995). | |
dc.relation.referencesen | [12] Zolotarev, S., Vengrinovich, V., Tillack, G.-R. (1998). Finite series expansion method modified for multi-step reconstruction from limited number of projections and views, 2nd Int. Conf. on Computer Methods and Inverse Problems in Non-destructive Testing and Diagnostics, Minsk, 20-23 Oct. 1998: Proc, Berlin: DGZFP. | |
dc.relation.referencesen | [13] Andreykiv, A. E., Lysak, N. V. (1989) Acoustic emission method in the study of destruction processes. Kyiv: Naukova Dumka [in Russian]. | |
dc.relation.referencesen | [14] Nazarchuk, Z. T., Skalsky, V. R. (2009). Acoustic emission diagnostics of structural elements: scientific and technical manual: In 3 volumes - Volume 1: Theoretical foundations of the acoustic emission method. Naukova Dumka [in Ukrainian]. | |
dc.relation.referencesen | [15] Paton, B. E., Lobanov, L. M., Nedoseka, A. Y. (2003). Technical diagnostics: yesterday, today, and tomorrow. Technical Diagnostics and Non-Destructive Testing, 4, 6-10. | |
dc.relation.referencesen | [16] Nedoseka, A. Y. (2005). Control of critical stress state using the acoustic emission method. In the World of Non-Destructive Testing, 1(27), 14-16. | |
dc.relation.referencesen | [17] Kim, D.Y., Kim, H.-B., Jung, W.S., Lim, S., Hwang, J.-H., Park, C.-W. (2013). Visual testing system for the damaged area detection of wind power plant blade, IEEE ISR 2013, 1-5. https://doi.org/10.1109/ISR.2013.6695675 | |
dc.relation.referencesen | [18] Poozesh, P., Baqersad, J., Niezrecki, C., Avitabile, P., Harvey, E., Yarala, R. (2017). Large-area photogrammetry based testing of wind turbine blades. Mechanical Systems and Signal Processing, 86, 98-115. https://doi.org/10.1016/j.ymssp.2016.07.021 | |
dc.relation.referencesen | [19] Zhang, D., Burnham, K., Mcdonald, L., Macleod, C., Dobie, G., Summan, R., Pierce, G. (2017). Remote inspection of wind turbine blades using UAV with photogrammetry payload. 56th Annual British Conference of Non-Destructive Testing-NDT 2017. | |
dc.relation.referencesen | [20] Ren, Y., Qu, F., Liu, J., Feng, J., Li, X. (2017). A universal modeling approach for wind turbine condition monitoring based on scada data. 6th Data Driven Control and Learning Systems (DDCLS), 265-269. https://doi.org/10.1109/DDCLS.2017.8068080 | |
dc.relation.referencesen | [21] Larrañaga-Valsero, B., Smith, R.A., Tayong, R.B., Fernández-López, A., Güemes, A. (2018). Wrinkle measurement in glass-carbon hybrid laminates comparing ultrasonic techniques: A case study. Composites Part A: Applied Science and Manufacturing, 114, 225-240. https://doi.org/10.1016/j.compositesa.2018.08.014 | |
dc.relation.referencesen | [22] Tiwari, K.A., Raisutis, R., Samaitis, V. (2017). Hybrid signal processing technique to improve the defect estimation in ultrasonic non-destructive testing of composite structures. Sensors, 17, 1-21. https://doi.org/10.3390/s17122858 | |
dc.relation.referencesen | [23] Tiwari, K.A., Raisutis, R. (2018). Post-processing of ultrasonic signals for the analysis of defects in wind turbine blade using guided waves. The Journal of Strain Analysis for Engineering Design, 53, 546-555. https://doi.org/10.1177/0309324718772668 | |
dc.relation.referencesen | [24] Lizaranzu, M., Lario, A., Chiminelli, A., Amenabar, I. (2015). Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Physics & Technology, 71, 113-120. https://doi.org/10.1016/j.infrared.2015.02.006 | |
dc.relation.referencesen | [25] Hwang, S., An, Y.-K., Sohn, H. (2017). Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Engineering, 188, 225-232. https://doi.org/10.1016/j.proeng.2017.04.478 | |
dc.relation.referencesen | [26] Garcea, S.C., Wang, Y., Withers, P.J. (2018). X-ray computed tomography of polymer composites. Composites Science and Technology, 156, 305-319. https://doi.org/10.1016/j.compscitech.2017.10.023 | |
dc.relation.referencesen | [27] Jasinien, E., Raiutis, R., Voleiis, A., Vladiauskas, A., Mitchard, D., Amos, M. (2019). NDT of wind turbine blades using adapted ultrasonic and radiographic techniques. Insight-Non-Destructive Testing and Condition Monitoring, 51, 477-483. https://doi.org/10.1784/insi.2009.51.9.477 | |
dc.relation.referencesen | [28] Mikkelsen, L.P. (2019). Visualizing composite materials for wind turbine blades using x-ray tomography. Abstract from Materials for Tomorrow. | |
dc.relation.referencesen | [29] Moll, J., Simon, J., Malzer, M., Krozer, V., Pozdniakov, D., Salman, R., Durr, M., Feulner, M., Nuber, A., Friedmann, H. (2018). Radar imaging system for in-service wind turbine blades inspections: Initial results from a field installation at a 2 mw wind turbine. Progress In Electromagnetics Research, 162, 51-60. https://doi.org/10.2528/PIER18021905 | |
dc.relation.referencesen | [30] Gómez, C., García, F., Arcos, A., Cheng, L., Kogia, M., Mohimi, A., Papaelias, M. (2017). A heuristic method for detecting and locating faults employing electromagnetic acoustic transducers. Eksploatacja i Niezawodność 2017, 19. https://doi.org/10.17531/ein.2017.4.1 | |
dc.relation.referencesen | [31] Tang, J., Soua, S., Mares, C., Gan, T.-H. (2017). A pattern recognition approach to acoustic emission data originating from fatigue of wind turbine blades. Sensors, 17, 2507. https://doi.org/10.3390/s17112507 | |
dc.relation.referencesen | [32] Fuentes, R., Dwyer-Joyce, R., Marshall, M., Wheals, J., Cross, E. (2020). Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling. Renewable Energy, 147, 776-797. https://doi.org/10.1016/j.renene.2019.08.019 | |
dc.relation.referencesen | [33] Ye, Y., Ma, K., Zhou, H., Arola, D., Zhang, D. (2019). An automated shearography system for cylindrical surface inspection. Measurement, 135, 400-405. https://doi.org/10.1016/j.measurement.2018.11.085 | |
dc.relation.referencesen | [34] Zhao, Q., Dan, X., Sun, F., Wang, Y., Wu, S., Yang, L. (2018). Digital shearography for NDT: Phase measurement technique and recent developments. Applied Sciences, 8, 2662. https://doi.org/10.3390/app8122662 | |
dc.relation.referencesen | [35] Márquez, F.P.G., Chacón, A, M. (2020). A Review of Non-Destructive Testing on Wind Turbines Blades. Renewable Energy, 161, 998-1010. https://doi.org/10.1016/j.renene.2020.07.145 | |
dc.relation.referencesen | [36] Chandrasekhar, K., Stevanovic, N., Cross, E. J., Dervilis, N., Worden, K. (2021). Damage detection in operational wind turbine blades using a new approach based on machine learning. Renewable energy, 168, 1249-1264. https://doi.org/10.1016/j.renene.2020.12.119 | |
dc.relation.referencesen | [37] Nelder, J. A., Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308 | |
dc.relation.referencesen | [38] Eldeeb, A. E., El-Arabi, M. E., Hussein, B. A. (2020). Effect of cracks in wind turbine blades on natural frequencies during operation. Journal of engineering and applied science, 67, 1995-2012. | |
dc.relation.referencesen | [39] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2002). Introduction to algorithms. Second edition. McGraw-Hill Book Company. | |
dc.relation.uri | https://doi.org/10.1109/ISR.2013.6695675 | |
dc.relation.uri | https://doi.org/10.1016/j.ymssp.2016.07.021 | |
dc.relation.uri | https://doi.org/10.1109/DDCLS.2017.8068080 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesa.2018.08.014 | |
dc.relation.uri | https://doi.org/10.3390/s17122858 | |
dc.relation.uri | https://doi.org/10.1177/0309324718772668 | |
dc.relation.uri | https://doi.org/10.1016/j.infrared.2015.02.006 | |
dc.relation.uri | https://doi.org/10.1016/j.proeng.2017.04.478 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2017.10.023 | |
dc.relation.uri | https://doi.org/10.1784/insi.2009.51.9.477 | |
dc.relation.uri | https://doi.org/10.2528/PIER18021905 | |
dc.relation.uri | https://doi.org/10.17531/ein.2017.4.1 | |
dc.relation.uri | https://doi.org/10.3390/s17112507 | |
dc.relation.uri | https://doi.org/10.1016/j.renene.2019.08.019 | |
dc.relation.uri | https://doi.org/10.1016/j.measurement.2018.11.085 | |
dc.relation.uri | https://doi.org/10.3390/app8122662 | |
dc.relation.uri | https://doi.org/10.1016/j.renene.2020.07.145 | |
dc.relation.uri | https://doi.org/10.1016/j.renene.2020.12.119 | |
dc.relation.uri | https://doi.org/10.1093/comjnl/7.4.308 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | відновлювана енергетика | |
dc.subject | методи неруйнівного контролю | |
dc.subject | акустичний НК | |
dc.subject | машинне навчання | |
dc.subject | БПЛА | |
dc.subject | renewable energy | |
dc.subject | methods of non-destructive testing | |
dc.subject | acoustic NDT | |
dc.subject | machine learning | |
dc.subject | UAV | |
dc.subject.udc | 620.16 | |
dc.subject.udc | 620.91 | |
dc.subject.udc | 004.67 | |
dc.title | Сучасний стан підходів до моніторингу технічного стану лопатей вітрових турбін з використанням інформаційних технологій | |
dc.title.alternative | The modern state of approaches to monitoring the technical condition of wind turbine blades us-ing information technologies | |
dc.type | Article |
Files
License bundle
1 - 1 of 1