Research and modeling kinetics ion exchange interactions

dc.citation.epage13
dc.citation.issue1
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage8
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorSabadash, Vira
dc.contributor.authorGumnitsky, Jaroslav
dc.contributor.authorKonovalov, Oleg
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-07T09:02:36Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractIn detail, this study analysed the kinetics of ammonium ion adsorption under dynamic conditions in the ―clinoptilolite -ammonium ion system. The work includes constructing a mathematical model of this process, which allows us to estimate and predict its essential characteristics. Calculations of mass transfer coefficients revealed their dependence on the intensity of medium mixing. A significant result is that ion exchange occurs in externally diffusion and intradiffusion regions. Ion exchange rate constants were calculated for the regions of external and internal diffusion, contributing to a deeper understanding of the mechanisms of this complex process. The research results will expand our knowledge about ion exchange interactions in the ―clinoptilolite -ammonium ion‖ system. In addition, they can be used to optimise the conditions of ammonium adsorption in similar systems, which is essential for practical applications related to water purification and other media from ammonium ions.
dc.format.extent8-13
dc.format.pages6
dc.identifier.citationSabadash V. Research and modeling kinetics ion exchange interactions / Vira Sabadash, Jaroslav Gumnitsky, Oleg Konovalov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 8–13.
dc.identifier.citationenSabadash V. Research and modeling kinetics ion exchange interactions / Vira Sabadash, Jaroslav Gumnitsky, Oleg Konovalov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 8–13.
dc.identifier.doidoi.org/10.23939/ep2024.01.008
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64507
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 1 (9), 2024
dc.relation.ispartofEnvironmental Problems, 1 (9), 2024
dc.relation.referencesBernal, M. P., Lopez-Real, J. M., & Scott, K. M. (1993). Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator. Bioresource Technology, 43(1), 35–39. doi: https://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.referencesde Haro Martí, M. E., Neibling, W. H., Chen, L., & Chahine, M. (2020). On-farm testing of a zeolite filter to capture ammonia and odors from a dairy manure flushing system. Transactions of the ASABE, 63(3), 597–607. doi: https://doi.10.13031/trans.13556
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 95–100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesLin, H., Wu, X., & Zhu, J. (2016). Kinetics, equilibrium, and thermodynamics of ammonium sorption from swine manure by natural chabazite. Separation Science and Technology, 51(2), 202–213. doi: https://doi.org/10.1080/01496395.2015.1086379
dc.relation.referencesMuscarella, S. M., Badalucco, L., Cano, B., Laudicina, V. A., & Mannina, G. (2021). Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresource Technology, 341, 125812. doi: https://doi.org/10.1016/j.biortech.2021.125812
dc.relation.referencesSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I. (2018 a). Thermodynamics of (NH4+) cation adsorption under static conditions. Chemistry & Chemical Technology, 12(2), 143–146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesSabadash, V., Gumnitsky, J., & Hertsyk, T. (2018 b) Thermodynamic studies on the adsorption behavior of ammonium on zeolite. Proceedings of the 8th International Youth Science Forum “Litteris et Artibus” November 22–24, 2018, Lviv: Lviv Polytechnic National University, 2018, pp. 190–193. doi: https://doi.org/10.23939/lea2018.01.190
dc.relation.referencesSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation of the process of ammonium ion adsorption by natural and synthetic sorbents by methods of multidimensional cluster analysis. Environmental Problems, 5(2), 113–118. doi: https://doi.org/10.23939/ep2020.02.113
dc.relation.referencesSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A. (2019). Application of zeolites in organic waste composting: A review. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesWang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q., & Ma, L. (2018). Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential. Journal of Cleaner Production, 195, 448–457. doi: https://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.referencesWu, K., Li, Y., Liu, T., Zhang, N., Wang, M., Yang, S., & Jin, P. (2019). Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite. Environmental Science and Pollution Research, 26(17), 17632–17643. doi: https://doi.org/10.1007/s11356-019-05069-2
dc.relation.referencesenBernal, M. P., Lopez-Real, J. M., & Scott, K. M. (1993). Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator. Bioresource Technology, 43(1), 35–39. doi: https://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.referencesende Haro Martí, M. E., Neibling, W. H., Chen, L., & Chahine, M. (2020). On-farm testing of a zeolite filter to capture ammonia and odors from a dairy manure flushing system. Transactions of the ASABE, 63(3), 597–607. doi: https://doi.10.13031/trans.13556
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). Statics and kinetics of albumin adsorption by natural zeolite. Chemistry & Chemical Technology, 1(13), 95–100. doi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenLin, H., Wu, X., & Zhu, J. (2016). Kinetics, equilibrium, and thermodynamics of ammonium sorption from swine manure by natural chabazite. Separation Science and Technology, 51(2), 202–213. doi: https://doi.org/10.1080/01496395.2015.1086379
dc.relation.referencesenMuscarella, S. M., Badalucco, L., Cano, B., Laudicina, V. A., & Mannina, G. (2021). Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresource Technology, 341, 125812. doi: https://doi.org/10.1016/j.biortech.2021.125812
dc.relation.referencesenSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I. (2018 a). Thermodynamics of (NH4+) cation adsorption under static conditions. Chemistry & Chemical Technology, 12(2), 143–146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesenSabadash, V., Gumnitsky, J., & Hertsyk, T. (2018 b) Thermodynamic studies on the adsorption behavior of ammonium on zeolite. Proceedings of the 8th International Youth Science Forum "Litteris et Artibus" November 22–24, 2018, Lviv: Lviv Polytechnic National University, 2018, pp. 190–193. doi: https://doi.org/10.23939/lea2018.01.190
dc.relation.referencesenSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation of the process of ammonium ion adsorption by natural and synthetic sorbents by methods of multidimensional cluster analysis. Environmental Problems, 5(2), 113–118. doi: https://doi.org/10.23939/ep2020.02.113
dc.relation.referencesenSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A. (2019). Application of zeolites in organic waste composting: A review. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesenWang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q., & Ma, L. (2018). Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential. Journal of Cleaner Production, 195, 448–457. doi: https://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.referencesenWu, K., Li, Y., Liu, T., Zhang, N., Wang, M., Yang, S., & Jin, P. (2019). Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite. Environmental Science and Pollution Research, 26(17), 17632–17643. doi: https://doi.org/10.1007/s11356-019-05069-2
dc.relation.urihttps://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.urihttps://doi.10.13031/trans.13556
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.1080/01496395.2015.1086379
dc.relation.urihttps://doi.org/10.1016/j.biortech.2021.125812
dc.relation.urihttps://doi.org/10.23939/chcht12.02.143
dc.relation.urihttps://doi.org/10.23939/lea2018.01.190
dc.relation.urihttps://doi.org/10.23939/ep2020.02.113
dc.relation.urihttps://doi.org/10.1016/j.bcab.2019.101396
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.urihttps://doi.org/10.1007/s11356-019-05069-2
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Sabadash V., Gumnitsky J., Konovalov O., 2024
dc.subjectwastewater
dc.subjection exchange
dc.subjectkinetics of adsorption
dc.subjectammonium
dc.subjectzeolite
dc.titleResearch and modeling kinetics ion exchange interactions
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n1_Sabadash_V-Research_and_modeling_kinetics_8-13.pdf
Size:
8.41 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n1_Sabadash_V-Research_and_modeling_kinetics_8-13__COVER.png
Size:
1.14 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: