Selecting a Monitoring Technology for a Control System of Distributed Oil Production Facilities

dc.citation.epage34
dc.citation.issue1
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage28
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЛобур, Михайло
dc.contributor.authorМаляр, Микола
dc.contributor.authorLobur, Mykhaylo
dc.contributor.authorMaliar, Mykola
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-10T08:12:25Z
dc.date.created2024-02-28
dc.date.issued2024-02-28
dc.description.abstractВ статті запропоновано структуру SCADA системи для моніторингу та керування об'єктами нафтовидобутку, які розосереджені на великій площі. Головний акцент в статті зроблено на виборі технології, яка дасть змогу здійснювати ефективний моніторинг за обладнанням кожної нафтової свердловини. Під час вибору бралися до уваги такі фактори, як надійність, зручність у користуванні, наявність засобів захисту від стороннього втручання, а також відкритість та доступність програмного коду. У результаті огляду найбільш поширених програмних платформ, було вибрано систему на основі Prometheus і Grafana. Це є поєднання сервера бази даних часових рядів Prometheus з системою візуалізації та аналізу інформації Grafana. Важливими факторами при виборі цієї платформи було наявність відкритого коду та великої бібліотеки готових шаблонів для відображення параметрів свердловини в реальному часі. Продемонстровано приклад створеного вікна візуалізації динамограми свердловини, яка побудована на основі експериментально знятих даних.
dc.description.abstractThe article proposes the structure of a SCADA system for monitoring and control of oil production facilities that are distributed over a large area. The main emphasis is on the selection of technology that will enable effective monitoring of the equipment of each oil well. Factors such as reliability, ease of use, availability of protection against third-party interference, as well as availability and accessibility of an open-source software code were taken into account. After reviewing the most common software platforms, a system based on Prometheus and Grafana was selected. It is a combination of the Prometheus time series database server and the Grafana information visualization and analysis system. The important factors that determined the choice of this platform were the availability of the open source code and a large library of ready-made templates for displaying the well parameters in real time. An example of the created visualization window of the dynamometer card of the well, built on the basis of the experimentally recorded data, is presented.
dc.format.extent28-34
dc.format.pages7
dc.identifier.citationLobur M. Selecting a Monitoring Technology for a Control System of Distributed Oil Production Facilities / Mykhaylo Lobur, Mykola Maliar // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 28–34.
dc.identifier.citationenLobur M. Selecting a Monitoring Technology for a Control System of Distributed Oil Production Facilities / Mykhaylo Lobur, Mykola Maliar // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 28–34.
dc.identifier.doidoi.org/10.23939/jeecs2024.01.028
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64043
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 1 (10), 2024
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (10), 2024
dc.relation.references[1] K. Stouffer, J. Falco, K. Kent, T. Grance, R. Ross (2006). Guide to supervisory control and data acquisition (SCADA) and industrial control systems security. NIST Spec. Publ., 800.
dc.relation.references[2] Shahzad, A., Musa, S., Aborujilah, A., Irfan, M. (2014). The SCADA review: system components, architecture, protocols and future security trends. American Journal of Applied Sciences, 11, 1418–1425. DOI: 10.3844/ajassp.2014.1418.1425
dc.relation.references[3] A. Setiawan, Sugeng, K. Koesoema, S. Bakhri, J. Aditya (2019). The SCADA system using PLC and HMI to improve the effectiveness and efficiency of production processes. IOP Conference Series: Materials Science and Engineering, 550. 012008. DOI: 10.1088/1757-899X/550/1/012008.
dc.relation.references[4] K. Chkara, H. Seghiouer (2022). “Criteria to Implement a Supervision System in the Petroleum Industry: A Case Study in a Terminal Storage Facility”, Advances in Science, Technology and Engineering Systems Journal, Vol. 5, No. 5, 29–38.
dc.relation.references[5] Rashad O., Attallah O., Morsi I. (2022). A smart PLC-SCADA framework for monitoring petroleum products terminals in industry 4.0 via machine learning. Measurement and Control, No. 55(7-8), 830–848. DOI: 10.1177/00202940221103305
dc.relation.references[6] Al-Fadhli M., A. Zaher (2018). A smart SCADA system for oil refineries. International Conference on Computing Sciences and Engineering (ICCSE), Kuwait City, Mar. 2018, 1–6. DOI: 10.1109/ICCSE1.2018.8373996
dc.relation.references[7] R. Pandit, J. Wang (2024). A comprehensive review on enhancing wind turbine applications with advanced SCADA data analytics and practical insights. IET Renew. Power Gener., Vol. 18, 722–742. DOI: 10.1049/rpg2.12920.
dc.relation.references[8] Boyko V. S. (2004). Development and operation of oil fields. RealPrint: Kyiv, 695.
dc.relation.references[9] Malyar A. (2016). Study of stationary modes of sucker rod pumping unit operation. Przeglad elektrotechniczny, 12, 255–259. DOI: 10.15199/48.2016.12.65.
dc.relation.references[10] L. Richardson, M. Amundsen (2013). RESTful Web APIs. Publisher: O’Reilly Media, Inc., 373.
dc.relation.references[11] M. Amundsen (2022). RESTful Web API Patterns and Practices Cookbook. Publisher: O’Reilly Media, Inc., 468.
dc.relation.references[12] Vohra D. (2016). Using Apache Kafka. In: Pro Docker. Apress, Berkeley, CA. 185–194. DOI: 10.1007/978-1-4842-1830-3_12
dc.relation.references[13] Wu Z. Shang, K. Wolter (2019). Performance Prediction for the Apache Kafka Messaging System, 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 2019, 154–161. DOI: 10.1109/HPCC/SmartCity/DSS.2019.00036.
dc.relation.references[14] Tejas V., Dr. Kiran V. (2020) Development of Kafka Messaging System and its Performance Test Framework using Prometheus, International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1622–1626. DOI: 10.35940/ijrte.A2516.059120
dc.relation.references[15] Gurpreet S. Sachdeva (2017). Practical Elk Stack: Build Actionable Insights and Business Metrics Using the Combined Power of Elasticsearch, Logstash, and Kibana. Publisher: APress, 302.
dc.relation.references[16] Tong Z. (2015). Elasticsearch: The Definitive Guide. O'Reilly Media, Inc. 686.
dc.relation.references[17] M. Yudha Erian Saputra, Noprianto, S. Noor Arief, V. Nur Wijayaningrum and Y. W. Syaifudin (2024). Real-Time Server Monitoring and Notification System with Prometheus, Grafana, and Telegram Integration, ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 1808–1813. DOI: 10.1109/ICETSIS61505.2024.10459488.
dc.relation.references[18] Vivek Basavegowda Ramu, Ajay Reddy Yeruva (2023). End-to-End Observability with Grafana: A comprehensive guide to observability and performance visualization with Grafana (English Edition). Publisher: BPB Publications, 710.
dc.relation.references[19] Kumar S., Saravanan C. (2021). A Comprehensive Study on Data Visualization Tool-Grafana. Journal of Emerging Technologies and Innovative Research (JETIR), 8(5), 908. Available: http://www.jetir.org/papers/JETIR2105788.pdf.
dc.relation.references[20] Kubernetes Resource Requests. Grafana Labs, https://grafana.com/grafana/dashboards/7187-kubernetes-resource-requests (accessed on 2024-02-28)
dc.relation.referencesen[1] K. Stouffer, J. Falco, K. Kent, T. Grance, R. Ross (2006). Guide to supervisory control and data acquisition (SCADA) and industrial control systems security. NIST Spec. Publ., 800.
dc.relation.referencesen[2] Shahzad, A., Musa, S., Aborujilah, A., Irfan, M. (2014). The SCADA review: system components, architecture, protocols and future security trends. American Journal of Applied Sciences, 11, 1418–1425. DOI: 10.3844/ajassp.2014.1418.1425
dc.relation.referencesen[3] A. Setiawan, Sugeng, K. Koesoema, S. Bakhri, J. Aditya (2019). The SCADA system using PLC and HMI to improve the effectiveness and efficiency of production processes. IOP Conference Series: Materials Science and Engineering, 550. 012008. DOI: 10.1088/1757-899X/550/1/012008.
dc.relation.referencesen[4] K. Chkara, H. Seghiouer (2022). "Criteria to Implement a Supervision System in the Petroleum Industry: A Case Study in a Terminal Storage Facility", Advances in Science, Technology and Engineering Systems Journal, Vol. 5, No. 5, 29–38.
dc.relation.referencesen[5] Rashad O., Attallah O., Morsi I. (2022). A smart PLC-SCADA framework for monitoring petroleum products terminals in industry 4.0 via machine learning. Measurement and Control, No. 55(7-8), 830–848. DOI: 10.1177/00202940221103305
dc.relation.referencesen[6] Al-Fadhli M., A. Zaher (2018). A smart SCADA system for oil refineries. International Conference on Computing Sciences and Engineering (ICCSE), Kuwait City, Mar. 2018, 1–6. DOI: 10.1109/ICCSE1.2018.8373996
dc.relation.referencesen[7] R. Pandit, J. Wang (2024). A comprehensive review on enhancing wind turbine applications with advanced SCADA data analytics and practical insights. IET Renew. Power Gener., Vol. 18, 722–742. DOI: 10.1049/rpg2.12920.
dc.relation.referencesen[8] Boyko V. S. (2004). Development and operation of oil fields. RealPrint: Kyiv, 695.
dc.relation.referencesen[9] Malyar A. (2016). Study of stationary modes of sucker rod pumping unit operation. Przeglad elektrotechniczny, 12, 255–259. DOI: 10.15199/48.2016.12.65.
dc.relation.referencesen[10] L. Richardson, M. Amundsen (2013). RESTful Web APIs. Publisher: O’Reilly Media, Inc., 373.
dc.relation.referencesen[11] M. Amundsen (2022). RESTful Web API Patterns and Practices Cookbook. Publisher: O’Reilly Media, Inc., 468.
dc.relation.referencesen[12] Vohra D. (2016). Using Apache Kafka. In: Pro Docker. Apress, Berkeley, CA. 185–194. DOI: 10.1007/978-1-4842-1830-3_12
dc.relation.referencesen[13] Wu Z. Shang, K. Wolter (2019). Performance Prediction for the Apache Kafka Messaging System, 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 2019, 154–161. DOI: 10.1109/HPCC/SmartCity/DSS.2019.00036.
dc.relation.referencesen[14] Tejas V., Dr. Kiran V. (2020) Development of Kafka Messaging System and its Performance Test Framework using Prometheus, International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1622–1626. DOI: 10.35940/ijrte.A2516.059120
dc.relation.referencesen[15] Gurpreet S. Sachdeva (2017). Practical Elk Stack: Build Actionable Insights and Business Metrics Using the Combined Power of Elasticsearch, Logstash, and Kibana. Publisher: APress, 302.
dc.relation.referencesen[16] Tong Z. (2015). Elasticsearch: The Definitive Guide. O'Reilly Media, Inc. 686.
dc.relation.referencesen[17] M. Yudha Erian Saputra, Noprianto, S. Noor Arief, V. Nur Wijayaningrum and Y. W. Syaifudin (2024). Real-Time Server Monitoring and Notification System with Prometheus, Grafana, and Telegram Integration, ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 1808–1813. DOI: 10.1109/ICETSIS61505.2024.10459488.
dc.relation.referencesen[18] Vivek Basavegowda Ramu, Ajay Reddy Yeruva (2023). End-to-End Observability with Grafana: A comprehensive guide to observability and performance visualization with Grafana (English Edition). Publisher: BPB Publications, 710.
dc.relation.referencesen[19] Kumar S., Saravanan C. (2021). A Comprehensive Study on Data Visualization Tool-Grafana. Journal of Emerging Technologies and Innovative Research (JETIR), 8(5), 908. Available: http://www.jetir.org/papers/JETIR2105788.pdf.
dc.relation.referencesen[20] Kubernetes Resource Requests. Grafana Labs, https://grafana.com/grafana/dashboards/7187-kubernetes-resource-requests (accessed on 2024-02-28)
dc.relation.urihttp://www.jetir.org/papers/JETIR2105788.pdf
dc.relation.urihttps://grafana.com/grafana/dashboards/7187-kubernetes-resource-requests
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectSCADA
dc.subjectмоніторинг
dc.subjectсистема керування
dc.subjectвізуалізація
dc.subjectPrometheus
dc.subjectGrafana
dc.subjectнафтовидобувна установка
dc.subjectSCADA
dc.subjectmonitoring
dc.subjectcontrol system
dc.subjectvisualization
dc.subjectPrometheus
dc.subjectGrafana
dc.subjectoil pumping unit
dc.titleSelecting a Monitoring Technology for a Control System of Distributed Oil Production Facilities
dc.title.alternativeВибір технології моніторингу для системи керування розподіленими об’єктами нафтовидобутку
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Lobur_M-Selecting_a_Monitoring_Technology_28-34.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Lobur_M-Selecting_a_Monitoring_Technology_28-34__COVER.png
Size:
424.57 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: