Eksploatacyjne zużycie tribologiczne cylindrów doładowanego Silnika wysokopprężnego wynikające z właściwości materiałowych jego żeliwnego bloku

dc.citation.conferenceАвтобусобудування та пасажирські перевезення в Україні
dc.citation.epage110
dc.citation.journalTitleАвтобусобудування та пасажирські перевезення в Україні : тези доповідей III-ої Всеукраїнської науково-практичної конференції, Львів
dc.citation.spage102
dc.contributor.affiliationPolitechnika Rzeszowska im. Ignacego Łukasiewicza
dc.contributor.authorMichalski, Jacek
dc.contributor.authorWoś, Paweł
dc.coverage.placenameЛьвів
dc.coverage.temporal22-23 лютого 2018 року
dc.date.accessioned2019-01-11T14:28:06Z
dc.date.available2019-01-11T14:28:06Z
dc.date.created2018-02-22
dc.date.issued2018-02-22
dc.description.abstractThe chemical composition, metallographic structure, graphite form and hardness of cast iron cylinders in 1.6D Turbo Diesel engine block powering a Polonez FSO car, after a very small run of 5762 km were shown. The accuracy of dimension and shape as well as the topography of the surface of its cylinders are also provided. A different value of abrasive wear of cylinders 1, 2, 3 was found in comparison with cylinder 4. The lower tribological wear of cylinder 4 resulted from its higher hardness caused by pearlite dispersion and more favorable shape of gray iron graphite particles, as compared to cylinders 1, 2 and 3 shown. This occurred for a similar geometric structure of the surface of the coated cylinders at a slightly higher height surface roughness of the fourth cylinder.
dc.format.extent102-110
dc.format.pages9
dc.identifier.citationMichalski J. Eksploatacyjne zużycie tribologiczne cylindrów doładowanego Silnika wysokopprężnego wynikające z właściwości materiałowych jego żeliwnego bloku / Jacek Michalski, Paweł Woś // Автобусобудування та пасажирські перевезення в Україні : тези доповідей III-ої Всеукраїнської науково-практичної конференції, Львів, 22-23 лютого 2018 року. — Львів : Видавництво Львівської політехніки, 2018. — С. 102–110. — (Автобусо- та автомобілебудування).
dc.identifier.citationenMichalski J. Tribologic wear of cylinders in turbocharched diesel engine resulted from material properties of cast iron block / Jacek Michalski, Paweł Woś // Avtobusobuduvannia ta pasazhyrski perevezennia v Ukraini : tezy dopovidei III-oi Vseukrainskoi naukovo-praktychnoi konferentsii, Lviv, 22-23 liutoho 2018 roku. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — P. 102–110. — (Avtobuso- ta avtomobilebuduvannia).
dc.identifier.isbn978-966-941-140-2
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/43558
dc.language.isopl
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofАвтобусобудування та пасажирські перевезення в Україні : тези доповідей III-ої Всеукраїнської науково-практичної конференції, Львів, 2018
dc.relation.references1. Challenges and Priorities for Automotive R&D. The Strategic Pillars of Research & Innovation. EUCAR European Council for Automotive R&D, Proceeding, 27th May, Brussels, 2011.
dc.relation.references2. GmbH Mahle: Cylinder Components: Properties, Applications, Materials. Vieweg+Teubner, Stuttgart, 2010.
dc.relation.references3. Kazmierczak A.: Physical aspects of wear of the piston-ring-cylinder set of combustion engines. Proceedings of the Institution of Mechanical Engineers part D-Journal of Automobile Engineering, 222 (11) 2103-2119, 2008.
dc.relation.references4. Cai Z., Zhang P., Zeng Q. Novel surface treat technology for improving wear-resistant properties of cylinder liner. Advanced Materials Research, 168-170 (1-3) 2387-2390, 2011.
dc.relation.references5. Orłowicz A. W., Tupaj M., Mroz M., Trytek A.: Combustion engine cylinder liners made of Al-Si alloys. Archives of Foundry Engineering, 15 (2) 71-74, 2015.
dc.relation.references6. Banerji A., Lukitsch M. J., McClory B., White D.R., Alpas A.T.: Effect of iron oxides on sliding friction of thermally sprayed 1010 steel coated cylinder bores. Wear, 376, 858-868, 2017.
dc.relation.references7. Gul H., Uysal M., Akbulut H., Alp A.: Effect of PC electrodeposition on the structure and tribological behavior of Ni-Al2O3 nanocomposite coatings. Surface & Coatings Technology, 258, 1202-1211, 2014.
dc.relation.references8. Bara M., Kmita T., Korzekwa J.: Microstructure and properties of composite coatings obtained on aluminium alloys. Archives of Metallurgy and Materials, 61 (3) 1107-1112, 2016.
dc.relation.references9. Góral A., Litynska-Dobrzynska L., Kot M.: Effect of surface roughness and structure features on tribological properties of electrodeposited nanocrystalline Ni and Ni/Al2O3 coatings. Journal of Materials Engineering and Performance, 26 (5) 2118-2128, 2017.
dc.relation.references10. Góral A.: Nanoscale structural defects in electrodeposited Ni/Al2O3 composite coatings. Surface & Coatings Technology, 319, 23-32, 2017.
dc.relation.references11. Slattery B. E., Perry T., Edrisy A.: Microstructural evolution of a eutectic Al-Si engine subjected to severe running conditions. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 512 (1-2) 76-81, 2009.
dc.relation.references12. Slattery B.E., Edrisy A., Perry T.: Investigation of wear induced surface and subsurface deformation in a linerless Al-Si engine. Wear, 269 (3-4) 298-309, 2010.
dc.relation.references13. Humienny Z. (red.): Specyfikacje geometrii wyrobów (GPS) Podręcznik europejski. WNT, Warszawa 2004.
dc.relation.references14. Adamczak S.: Pomiary geometryczne powierzchni, zarysy kształtu, falistość i chropowatość. Wydawnictwa Naukowo Techniczne WNT, Warszawa 2008.
dc.relation.references15. Norma PN-EN ISO 12180-1:2012: Specyfikacje geometrii wyrobów (GPS) - Walcowość - Część 1: Terminologia i parametry kształtu walcowego, Polski Komitet Normalizacyjny, Warszawa 2012.
dc.relation.references16. Norma PN-EN ISO 12180-2:2012: Specyfikacje geometrii wyrobów (GPS) - Walcowość - Część 2: Operatory specyfikacji, Polski Komitet Normalizacyjny, Warszawa 2012.
dc.relation.referencesen1. Challenges and Priorities for Automotive R&D. The Strategic Pillars of Research & Innovation. EUCAR European Council for Automotive R&D, Proceeding, 27th May, Brussels, 2011.
dc.relation.referencesen2. GmbH Mahle: Cylinder Components: Properties, Applications, Materials. Vieweg+Teubner, Stuttgart, 2010.
dc.relation.referencesen3. Kazmierczak A., Physical aspects of wear of the piston-ring-cylinder set of combustion engines. Proceedings of the Institution of Mechanical Engineers part D-Journal of Automobile Engineering, 222 (11) 2103-2119, 2008.
dc.relation.referencesen4. Cai Z., Zhang P., Zeng Q. Novel surface treat technology for improving wear-resistant properties of cylinder liner. Advanced Materials Research, 168-170 (1-3) 2387-2390, 2011.
dc.relation.referencesen5. Orłowicz A. W., Tupaj M., Mroz M., Trytek A., Combustion engine cylinder liners made of Al-Si alloys. Archives of Foundry Engineering, 15 (2) 71-74, 2015.
dc.relation.referencesen6. Banerji A., Lukitsch M. J., McClory B., White D.R., Alpas A.T., Effect of iron oxides on sliding friction of thermally sprayed 1010 steel coated cylinder bores. Wear, 376, 858-868, 2017.
dc.relation.referencesen7. Gul H., Uysal M., Akbulut H., Alp A., Effect of PC electrodeposition on the structure and tribological behavior of Ni-Al2O3 nanocomposite coatings. Surface & Coatings Technology, 258, 1202-1211, 2014.
dc.relation.referencesen8. Bara M., Kmita T., Korzekwa J., Microstructure and properties of composite coatings obtained on aluminium alloys. Archives of Metallurgy and Materials, 61 (3) 1107-1112, 2016.
dc.relation.referencesen9. Góral A., Litynska-Dobrzynska L., Kot M., Effect of surface roughness and structure features on tribological properties of electrodeposited nanocrystalline Ni and Ni/Al2O3 coatings. Journal of Materials Engineering and Performance, 26 (5) 2118-2128, 2017.
dc.relation.referencesen10. Góral A., Nanoscale structural defects in electrodeposited Ni/Al2O3 composite coatings. Surface & Coatings Technology, 319, 23-32, 2017.
dc.relation.referencesen11. Slattery B. E., Perry T., Edrisy A., Microstructural evolution of a eutectic Al-Si engine subjected to severe running conditions. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 512 (1-2) 76-81, 2009.
dc.relation.referencesen12. Slattery B.E., Edrisy A., Perry T., Investigation of wear induced surface and subsurface deformation in a linerless Al-Si engine. Wear, 269 (3-4) 298-309, 2010.
dc.relation.referencesen13. Humienny Z. (red.): Specyfikacje geometrii wyrobów (GPS) Podręcznik europejski. WNT, Warszawa 2004.
dc.relation.referencesen14. Adamczak S., Pomiary geometryczne powierzchni, zarysy kształtu, falistość i chropowatość. Wydawnictwa Naukowo Techniczne WNT, Warszawa 2008.
dc.relation.referencesen15. Norma PN-EN ISO 12180-1:2012: Specyfikacje geometrii wyrobów (GPS) - Walcowość - Część 1: Terminologia i parametry kształtu walcowego, Polski Komitet Normalizacyjny, Warszawa 2012.
dc.relation.referencesen16. Norma PN-EN ISO 12180-2:2012: Specyfikacje geometrii wyrobów (GPS) - Walcowość - Część 2: Operatory specyfikacji, Polski Komitet Normalizacyjny, Warszawa 2012.
dc.rights.holder© Національний університет "Львівська політехніка", 2018
dc.subject.udc629.113
dc.titleEksploatacyjne zużycie tribologiczne cylindrów doładowanego Silnika wysokopprężnego wynikające z właściwości materiałowych jego żeliwnego bloku
dc.title.alternativeTribologic wear of cylinders in turbocharched diesel engine resulted from material properties of cast iron block
dc.typeConference Abstract

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018_Michalski_J-Tribologic_wear_of_cylinders_102-110.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018_Michalski_J-Tribologic_wear_of_cylinders_102-110__COVER.png
Size:
471.31 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: