Simulation of ion exchange interaction kinetics in the clinoptylolite – ammonium ion system

dc.citation.epage237
dc.citation.issue4
dc.citation.spage233
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorSabadash, Vira
dc.contributor.authorGumnitsky, Jaroslaw
dc.contributor.authorOmelyanova, Sofia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T07:46:01Z
dc.date.available2023-05-04T07:46:01Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractThe kinetics of adsorption of ammonium ions under dynamic conditions has been studied. A mathematical model of the process was built. The mass transfer coefficient was calculated depending on the intensity of the change of location. It was established that ion exchange occurs in external and internal diffusion regions. The rate constants of ion exchange for the region of external and internal diffusion were calculated.
dc.format.extent233-237
dc.format.pages5
dc.identifier.citationSabadash V. Simulation of ion exchange interaction kinetics in the clinoptylolite – ammonium ion system / Vira Sabadash, Jaroslaw Gumnitsky, Sofia Omelyanova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 4. — P. 233–237.
dc.identifier.citationenSabadash V. Simulation of ion exchange interaction kinetics in the clinoptylolite – ammonium ion system / Vira Sabadash, Jaroslaw Gumnitsky, Sofia Omelyanova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 4. — P. 233–237.
dc.identifier.doidoi.org/10.23939/ep2021.04.233
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59006
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 4 (6), 2021
dc.relation.referencesBernal, M. P., Lopez-Real, J. M., & Scott, K. M. (1993).
dc.relation.referencesApplication of natural zeolites for the reduction of ammonia
dc.relation.referencesemissions during the composting of organic wastes in
dc.relation.referencesa laboratory composting simulator. Bioresource
dc.relation.referencesTechnology, 43(1), 35-39. doi: https://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.referencesde Haro Martí, M. E., Neibling, W. H., Chen, L., & Chahine, M.
dc.relation.references(2020). On-farm testing of a zeolite filter to capture
dc.relation.referencesammonia and odors from a dairy manure flushing system.
dc.relation.referencesTransactions of the ASABE, 63(3), 597-607. doi: https://doi:10.13031/trans.13556
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesStatics and kinetics of albumin adsorption by natural zeolite.
dc.relation.referencesChemistry & Chemical Technology, 1(13), 95-100. doi:
dc.relation.referenceshttps://doi.org/10.23939/chcht13.01.095
dc.relation.referencesKaramanlis, X., Fortomaris, P., Arsenos, G., Dosis, I.,
dc.relation.referencesPapaioannou, D., Batzios, C., & Kamarianos, A. (2008).
dc.relation.referencesThe effect of a natural zeolite (clinoptilolite) on the
dc.relation.referencesperformance of broiler chickens and the quality of their
dc.relation.referenceslitter. Asian-Australasian Journal of Animal Sciences, 21(11), 1642-1650. doi: https://doi.org/10.5713/ajas.2008.70652
dc.relation.referencesLin, H., Wu, X., & Zhu, J. (2016). Kinetics, equilibrium, and
dc.relation.referencesthermodynamics of ammonium sorption from swine manure
dc.relation.referencesby natural chabazite. Separation Science and Technology,51(2), 202-213. doi: https://doi.org/10.1080/01496395.2015.1086379
dc.relation.referencesSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I. (2018).
dc.relation.referencesThermodynamics of (NH4+) cation adsorption under static
dc.relation.referencesconditions. Chemistry & Chemical Technology, 12(2), 143-146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesSabadash, V., Gumnitsky, J., & Hertsyk, T. (2018).
dc.relation.referencesThermodynamic studies on the adsorption behavior of
dc.relation.referencesammonium on zeolite. International joint forum LEA’2018
dc.relation.references& YSTCMT’2018, November 22-24th 2018. Lviv, Ukraine.
dc.relation.referencesdoi: https://doi.org/10.23939/lea2018.01.190
dc.relation.referencesSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation
dc.relation.referencesof the process of ammonium ion adsorption by natural and
dc.relation.referencessynthetic sorbents by methods of multidimensional cluster
dc.relation.referencesanalysis. Environmental Problems, 5(2), 113-118. doi:
dc.relation.referenceshttps://doi.org/10.23939/ep2020.02.113
dc.relation.referencesSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A.
dc.relation.references(2019). Application of zeolites in organic waste
dc.relation.referencescomposting: A review. Biocatalysis and Agricultural
dc.relation.referencesBiotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesStelwagen, K., Beukes, P. C., & Hemmings, C. (2020). Effect
dc.relation.referencesof zeolite administration on nitrogen metabolism and
dc.relation.referencesexcretion in lactating dairy cows offered pasture herbage.
dc.relation.referencesAnimal Production Science, 61(6), 560-567. doi:
dc.relation.referenceshttps://doi.org/10.1071/AN19674
dc.relation.referencesWang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q.,
dc.relation.references& Ma, L. (2018). Composting with negative pressure
dc.relation.referencesaeration for the mitigation of ammonia emissions and
dc.relation.referencesglobal warming potential. Journal of Cleaner
dc.relation.referencesProduction, 195, 448-457. doi: https://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.referencesWijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J.,
dc.relation.referencesSommer, S. G., & Chen, D. (2018). Effect of Australian
dc.relation.referenceszeolite on methane production and ammonium removal
dc.relation.referencesduring anaerobic digestion of swine manure. Journal of
dc.relation.referencesenvironmental chemical engineering, 6(1), 1233-1241. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.jece.2018.01.028
dc.relation.referencesenBernal, M. P., Lopez-Real, J. M., & Scott, K. M. (1993).
dc.relation.referencesenApplication of natural zeolites for the reduction of ammonia
dc.relation.referencesenemissions during the composting of organic wastes in
dc.relation.referencesena laboratory composting simulator. Bioresource
dc.relation.referencesenTechnology, 43(1), 35-39. doi: https://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.referencesende Haro Martí, M. E., Neibling, W. H., Chen, L., & Chahine, M.
dc.relation.referencesen(2020). On-farm testing of a zeolite filter to capture
dc.relation.referencesenammonia and odors from a dairy manure flushing system.
dc.relation.referencesenTransactions of the ASABE, 63(3), 597-607. doi: https://doi:10.13031/trans.13556
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesenStatics and kinetics of albumin adsorption by natural zeolite.
dc.relation.referencesenChemistry & Chemical Technology, 1(13), 95-100. doi:
dc.relation.referencesenhttps://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenKaramanlis, X., Fortomaris, P., Arsenos, G., Dosis, I.,
dc.relation.referencesenPapaioannou, D., Batzios, C., & Kamarianos, A. (2008).
dc.relation.referencesenThe effect of a natural zeolite (clinoptilolite) on the
dc.relation.referencesenperformance of broiler chickens and the quality of their
dc.relation.referencesenlitter. Asian-Australasian Journal of Animal Sciences, 21(11), 1642-1650. doi: https://doi.org/10.5713/ajas.2008.70652
dc.relation.referencesenLin, H., Wu, X., & Zhu, J. (2016). Kinetics, equilibrium, and
dc.relation.referencesenthermodynamics of ammonium sorption from swine manure
dc.relation.referencesenby natural chabazite. Separation Science and Technology,51(2), 202-213. doi: https://doi.org/10.1080/01496395.2015.1086379
dc.relation.referencesenSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I. (2018).
dc.relation.referencesenThermodynamics of (NH4+) cation adsorption under static
dc.relation.referencesenconditions. Chemistry & Chemical Technology, 12(2), 143-146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesenSabadash, V., Gumnitsky, J., & Hertsyk, T. (2018).
dc.relation.referencesenThermodynamic studies on the adsorption behavior of
dc.relation.referencesenammonium on zeolite. International joint forum LEA’2018
dc.relation.referencesen& YSTCMT’2018, November 22-24th 2018. Lviv, Ukraine.
dc.relation.referencesendoi: https://doi.org/10.23939/lea2018.01.190
dc.relation.referencesenSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation
dc.relation.referencesenof the process of ammonium ion adsorption by natural and
dc.relation.referencesensynthetic sorbents by methods of multidimensional cluster
dc.relation.referencesenanalysis. Environmental Problems, 5(2), 113-118. doi:
dc.relation.referencesenhttps://doi.org/10.23939/ep2020.02.113
dc.relation.referencesenSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A.
dc.relation.referencesen(2019). Application of zeolites in organic waste
dc.relation.referencesencomposting: A review. Biocatalysis and Agricultural
dc.relation.referencesenBiotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesenStelwagen, K., Beukes, P. C., & Hemmings, C. (2020). Effect
dc.relation.referencesenof zeolite administration on nitrogen metabolism and
dc.relation.referencesenexcretion in lactating dairy cows offered pasture herbage.
dc.relation.referencesenAnimal Production Science, 61(6), 560-567. doi:
dc.relation.referencesenhttps://doi.org/10.1071/AN19674
dc.relation.referencesenWang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q.,
dc.relation.referencesen& Ma, L. (2018). Composting with negative pressure
dc.relation.referencesenaeration for the mitigation of ammonia emissions and
dc.relation.referencesenglobal warming potential. Journal of Cleaner
dc.relation.referencesenProduction, 195, 448-457. doi: https://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.referencesenWijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J.,
dc.relation.referencesenSommer, S. G., & Chen, D. (2018). Effect of Australian
dc.relation.referencesenzeolite on methane production and ammonium removal
dc.relation.referencesenduring anaerobic digestion of swine manure. Journal of
dc.relation.referencesenenvironmental chemical engineering, 6(1), 1233-1241. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.jece.2018.01.028
dc.relation.urihttps://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.urihttps://doi:10.13031/trans.13556
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.5713/ajas.2008.70652
dc.relation.urihttps://doi.org/10.1080/01496395.2015.1086379
dc.relation.urihttps://doi.org/10.23939/chcht12.02.143
dc.relation.urihttps://doi.org/10.23939/lea2018.01.190
dc.relation.urihttps://doi.org/10.23939/ep2020.02.113
dc.relation.urihttps://doi.org/10.1016/j.bcab.2019.101396
dc.relation.urihttps://doi.org/10.1071/AN19674
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.urihttps://doi.org/10.1016/j.jece.2018.01.028
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Sabadash V., Gumnitsky J., Omelyanova S., 2021
dc.subjectadsorption
dc.subjection exchange
dc.subjectkinetics
dc.subjectammonium
dc.subjectzeolite
dc.titleSimulation of ion exchange interaction kinetics in the clinoptylolite – ammonium ion system
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v6n4_Sabadash_V-Simulation_of_ion_exchange_233-237.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v6n4_Sabadash_V-Simulation_of_ion_exchange_233-237__COVER.png
Size:
418.2 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: