Theoretical substantiation of the results of measuring anomalies of spacecraft trajectories
dc.citation.epage | 15 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
dc.citation.spage | 11 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Chaban, Vasil | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-03-11T09:15:13Z | |
dc.date.available | 2024-03-11T09:15:13Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | It is about the solar acceleration of spacecraft. The prevailing opinion that classical properties of the fundamental laws of statics can be successfully used in the celestial mechanics of low speeds (v << c) has been refuted because the involvement of relativistic methods does not improve the situation due to the smallness of the gravity magnetic acceleration. The essence of the problem is that the known classic methods of the theory of motion operate solely on the transverse component of the velocity vector concerning the orientation of the radius vector of the gravitational interaction. In the article, an insufficient longitudinal component was introduced into the electrogravity theory of motion, the effect of which turned out to be an order of magnitude higher than the effect of the transverse one. | |
dc.format.extent | 11-15 | |
dc.format.pages | 5 | |
dc.identifier.citation | Chaban V. Theoretical substantiation of the results of measuring anomalies of spacecraft trajectories / Vasil Chaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 11–15. | |
dc.identifier.citationen | Chaban V. Theoretical substantiation of the results of measuring anomalies of spacecraft trajectories / Vasil Chaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 11–15. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2023.02.011 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61438 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вимірювальна техніка та метрологія, 3 (84), 2023 | |
dc.relation.ispartof | Measuring Equipment and Metrology, 3 (84), 2023 | |
dc.relation.references | [1] Tchaban V. Electrogravity: movement in an electric and gravitational field. Lviv: Space M, 2023. 160 p. (ISBN 978-617-8055-50-9). | |
dc.relation.references | [2] Anderson, J. D.; Laing, P. A.; Lau, E. L.; Liu, A. S.; Nieto, M. M.; Turyshev, S. G. (1998). Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Physical Review Letters 81 (14): 2858–2861. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.2858 | |
dc.relation.references | [3] S. G. Turyshev, V. T. Toth, G. Kinsella, Siu-Chun Lee, ShingM. Lok, J. Ellis. Support for the Thermal Origin of the Pioneer Anomaly // Physical Review Letters. 2012. 15 June (Vol. 108, Iss. 24). ISSN 0031-9007. https://arxiv.org/abs/1204.2507 | |
dc.relation.references | [4] Dittus, H. (2005). A Mission to Explore the Pioneer Anomaly. ESA Special Publication 588: 3–10. https://www.researchgate.net/publication/47503767_A_Mission_to_Explore_the_Pioneer_Anomaly | |
dc.relation.references | [5] RuggieroM. L., Tartaglia A. Gravitomagnetic effects. Nuovo Cim. 117B (2002), 743–768. https://arxiv.org/abs/grqc/0207065 | |
dc.relation.references | [6] Clark S. J., Tucker R. W. Gauge symmetry and gravitoelectromagnetism // Classical and Quantum Gravity: journal. 2000. https://iopscience.iop.org/article/10.1088/0264-9381/17/19/311 | |
dc.relation.references | [7] M. Tajmar, F. Plesescu, B. Seifert, K. Marhold. Measurement of Gravitomagnetic and Acceleration Fields around Rotating Superconductors // AIP Conf. Proc.: journal. 2006. Vol. 880 (13 August), 1071–1082. https://arxiv.org/abs/grqc/0610015 | |
dc.relation.references | [8] Tchaban V. Radial Heliocentric Acceleration of Spacecraft ofMovement. ModernMethods for the Development of Science // I Intern. Scientific and Practical Conference, Haifa, Izrael (January 09–11, 2023), 330–334. | |
dc.relation.references | [9] Tyson, Neil deGrasse; Goldsmith, Donald (2004). Origins: Fourteen Billion Years of Cosmic Evolution. W. W. Norton & Co, 84–85. https://nvdinfinity.files.wordpress.com/2015/10/tyson-neil-degrasse-origins-fourteen-billionyears-of-cosmic-evolution2.pdf | |
dc.relation.referencesen | [1] Tchaban V. Electrogravity: movement in an electric and gravitational field. Lviv: Space M, 2023. 160 p. (ISBN 978-617-8055-50-9). | |
dc.relation.referencesen | [2] Anderson, J. D.; Laing, P. A.; Lau, E. L.; Liu, A. S.; Nieto, M. M.; Turyshev, S. G. (1998). Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Physical Review Letters 81 (14): 2858–2861. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.2858 | |
dc.relation.referencesen | [3] S. G. Turyshev, V. T. Toth, G. Kinsella, Siu-Chun Lee, ShingM. Lok, J. Ellis. Support for the Thermal Origin of the Pioneer Anomaly, Physical Review Letters. 2012. 15 June (Vol. 108, Iss. 24). ISSN 0031-9007. https://arxiv.org/abs/1204.2507 | |
dc.relation.referencesen | [4] Dittus, H. (2005). A Mission to Explore the Pioneer Anomaly. ESA Special Publication 588: 3–10. https://www.researchgate.net/publication/47503767_A_Mission_to_Explore_the_Pioneer_Anomaly | |
dc.relation.referencesen | [5] RuggieroM. L., Tartaglia A. Gravitomagnetic effects. Nuovo Cim. 117B (2002), 743–768. https://arxiv.org/abs/grqc/0207065 | |
dc.relation.referencesen | [6] Clark S. J., Tucker R. W. Gauge symmetry and gravitoelectromagnetism, Classical and Quantum Gravity: journal. 2000. https://iopscience.iop.org/article/10.1088/0264-9381/17/19/311 | |
dc.relation.referencesen | [7] M. Tajmar, F. Plesescu, B. Seifert, K. Marhold. Measurement of Gravitomagnetic and Acceleration Fields around Rotating Superconductors, AIP Conf. Proc., journal. 2006. Vol. 880 (13 August), 1071–1082. https://arxiv.org/abs/grqc/0610015 | |
dc.relation.referencesen | [8] Tchaban V. Radial Heliocentric Acceleration of Spacecraft ofMovement. ModernMethods for the Development of Science, I Intern. Scientific and Practical Conference, Haifa, Izrael (January 09–11, 2023), 330–334. | |
dc.relation.referencesen | [9] Tyson, Neil deGrasse; Goldsmith, Donald (2004). Origins: Fourteen Billion Years of Cosmic Evolution. W. W. Norton & Co, 84–85. https://nvdinfinity.files.wordpress.com/2015/10/tyson-neil-degrasse-origins-fourteen-billionyears-of-cosmic-evolution2.pdf | |
dc.relation.uri | https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.2858 | |
dc.relation.uri | https://arxiv.org/abs/1204.2507 | |
dc.relation.uri | https://www.researchgate.net/publication/47503767_A_Mission_to_Explore_the_Pioneer_Anomaly | |
dc.relation.uri | https://arxiv.org/abs/grqc/0207065 | |
dc.relation.uri | https://iopscience.iop.org/article/10.1088/0264-9381/17/19/311 | |
dc.relation.uri | https://arxiv.org/abs/grqc/0610015 | |
dc.relation.uri | https://nvdinfinity.files.wordpress.com/2015/10/tyson-neil-degrasse-origins-fourteen-billionyears-of-cosmic-evolution2.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | Electrogravity | |
dc.subject | Additional solar acceleration of spacecraft | |
dc.subject | Adapted Newton’s law of gravity for motion | |
dc.title | Theoretical substantiation of the results of measuring anomalies of spacecraft trajectories | |
dc.type | Article |
Files
License bundle
1 - 1 of 1