Theoretical substantiation of the results of measuring anomalies of spacecraft trajectories

dc.citation.epage15
dc.citation.issue3
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage11
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorChaban, Vasil
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-03-11T09:15:13Z
dc.date.available2024-03-11T09:15:13Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractIt is about the solar acceleration of spacecraft. The prevailing opinion that classical properties of the fundamental laws of statics can be successfully used in the celestial mechanics of low speeds (v << c) has been refuted because the involvement of relativistic methods does not improve the situation due to the smallness of the gravity magnetic acceleration. The essence of the problem is that the known classic methods of the theory of motion operate solely on the transverse component of the velocity vector concerning the orientation of the radius vector of the gravitational interaction. In the article, an insufficient longitudinal component was introduced into the electrogravity theory of motion, the effect of which turned out to be an order of magnitude higher than the effect of the transverse one.
dc.format.extent11-15
dc.format.pages5
dc.identifier.citationChaban V. Theoretical substantiation of the results of measuring anomalies of spacecraft trajectories / Vasil Chaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 11–15.
dc.identifier.citationenChaban V. Theoretical substantiation of the results of measuring anomalies of spacecraft trajectories / Vasil Chaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 3. — P. 11–15.
dc.identifier.doidoi.org/10.23939/istcmtm2023.02.011
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61438
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 3 (84), 2023
dc.relation.ispartofMeasuring Equipment and Metrology, 3 (84), 2023
dc.relation.references[1] Tchaban V. Electrogravity: movement in an electric and gravitational field. Lviv: Space M, 2023. 160 p. (ISBN 978-617-8055-50-9).
dc.relation.references[2] Anderson, J. D.; Laing, P. A.; Lau, E. L.; Liu, A. S.; Nieto, M. M.; Turyshev, S. G. (1998). Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Physical Review Letters 81 (14): 2858–2861. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.2858
dc.relation.references[3] S. G. Turyshev, V. T. Toth, G. Kinsella, Siu-Chun Lee, ShingM. Lok, J. Ellis. Support for the Thermal Origin of the Pioneer Anomaly // Physical Review Letters. 2012. 15 June (Vol. 108, Iss. 24). ISSN 0031-9007. https://arxiv.org/abs/1204.2507
dc.relation.references[4] Dittus, H. (2005). A Mission to Explore the Pioneer Anomaly. ESA Special Publication 588: 3–10. https://www.researchgate.net/publication/47503767_A_Mission_to_Explore_the_Pioneer_Anomaly
dc.relation.references[5] RuggieroM. L., Tartaglia A. Gravitomagnetic effects. Nuovo Cim. 117B (2002), 743–768. https://arxiv.org/abs/grqc/0207065
dc.relation.references[6] Clark S. J., Tucker R. W. Gauge symmetry and gravitoelectromagnetism // Classical and Quantum Gravity: journal. 2000. https://iopscience.iop.org/article/10.1088/0264-9381/17/19/311
dc.relation.references[7] M. Tajmar, F. Plesescu, B. Seifert, K. Marhold. Measurement of Gravitomagnetic and Acceleration Fields around Rotating Superconductors // AIP Conf. Proc.: journal. 2006. Vol. 880 (13 August), 1071–1082. https://arxiv.org/abs/grqc/0610015
dc.relation.references[8] Tchaban V. Radial Heliocentric Acceleration of Spacecraft ofMovement. ModernMethods for the Development of Science // I Intern. Scientific and Practical Conference, Haifa, Izrael (January 09–11, 2023), 330–334.
dc.relation.references[9] Tyson, Neil deGrasse; Goldsmith, Donald (2004). Origins: Fourteen Billion Years of Cosmic Evolution. W. W. Norton & Co, 84–85. https://nvdinfinity.files.wordpress.com/2015/10/tyson-neil-degrasse-origins-fourteen-billionyears-of-cosmic-evolution2.pdf
dc.relation.referencesen[1] Tchaban V. Electrogravity: movement in an electric and gravitational field. Lviv: Space M, 2023. 160 p. (ISBN 978-617-8055-50-9).
dc.relation.referencesen[2] Anderson, J. D.; Laing, P. A.; Lau, E. L.; Liu, A. S.; Nieto, M. M.; Turyshev, S. G. (1998). Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Physical Review Letters 81 (14): 2858–2861. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.2858
dc.relation.referencesen[3] S. G. Turyshev, V. T. Toth, G. Kinsella, Siu-Chun Lee, ShingM. Lok, J. Ellis. Support for the Thermal Origin of the Pioneer Anomaly, Physical Review Letters. 2012. 15 June (Vol. 108, Iss. 24). ISSN 0031-9007. https://arxiv.org/abs/1204.2507
dc.relation.referencesen[4] Dittus, H. (2005). A Mission to Explore the Pioneer Anomaly. ESA Special Publication 588: 3–10. https://www.researchgate.net/publication/47503767_A_Mission_to_Explore_the_Pioneer_Anomaly
dc.relation.referencesen[5] RuggieroM. L., Tartaglia A. Gravitomagnetic effects. Nuovo Cim. 117B (2002), 743–768. https://arxiv.org/abs/grqc/0207065
dc.relation.referencesen[6] Clark S. J., Tucker R. W. Gauge symmetry and gravitoelectromagnetism, Classical and Quantum Gravity: journal. 2000. https://iopscience.iop.org/article/10.1088/0264-9381/17/19/311
dc.relation.referencesen[7] M. Tajmar, F. Plesescu, B. Seifert, K. Marhold. Measurement of Gravitomagnetic and Acceleration Fields around Rotating Superconductors, AIP Conf. Proc., journal. 2006. Vol. 880 (13 August), 1071–1082. https://arxiv.org/abs/grqc/0610015
dc.relation.referencesen[8] Tchaban V. Radial Heliocentric Acceleration of Spacecraft ofMovement. ModernMethods for the Development of Science, I Intern. Scientific and Practical Conference, Haifa, Izrael (January 09–11, 2023), 330–334.
dc.relation.referencesen[9] Tyson, Neil deGrasse; Goldsmith, Donald (2004). Origins: Fourteen Billion Years of Cosmic Evolution. W. W. Norton & Co, 84–85. https://nvdinfinity.files.wordpress.com/2015/10/tyson-neil-degrasse-origins-fourteen-billionyears-of-cosmic-evolution2.pdf
dc.relation.urihttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.2858
dc.relation.urihttps://arxiv.org/abs/1204.2507
dc.relation.urihttps://www.researchgate.net/publication/47503767_A_Mission_to_Explore_the_Pioneer_Anomaly
dc.relation.urihttps://arxiv.org/abs/grqc/0207065
dc.relation.urihttps://iopscience.iop.org/article/10.1088/0264-9381/17/19/311
dc.relation.urihttps://arxiv.org/abs/grqc/0610015
dc.relation.urihttps://nvdinfinity.files.wordpress.com/2015/10/tyson-neil-degrasse-origins-fourteen-billionyears-of-cosmic-evolution2.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectElectrogravity
dc.subjectAdditional solar acceleration of spacecraft
dc.subjectAdapted Newton’s law of gravity for motion
dc.titleTheoretical substantiation of the results of measuring anomalies of spacecraft trajectories
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v84n3_Chaban_V-Theoretical_substantiation_11-15.pdf
Size:
138.36 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v84n3_Chaban_V-Theoretical_substantiation_11-15__COVER.png
Size:
557.91 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: