Structural and kinematic synthesis of the 1-Dof eight-bar walking mechanism with revolute kinematic pairs

dc.citation.epage102
dc.citation.issue2
dc.citation.journalTitleUkrainian Journal of Mechanical Engineering and Materials Science
dc.citation.spage88
dc.citation.volume3
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKorendiy, Vitaliy
dc.coverage.placenameLviv
dc.date.accessioned2018-10-01T07:54:31Z
dc.date.available2018-10-01T07:54:31Z
dc.date.created2017-10-19
dc.date.issued2017-10-19
dc.description.abstractProblem statement. The use of existing and the most widespread drives (wheeled and caterpillar one) is sometimes limited by complicated operational conditions while moving on rough terrain. The mentioned drives require a relatively flat surface to be operated effectively. A rocky or a hilly terrain imposes the demand of the use of alternative types of drives, in particular, walking ones. Purpose. In this paper, there will be proposed and analysed one of the possible structures of the walking mechanism for mobile robotic system to be used on rough terrain. Methodology. While carrying out the investigations, the structural and kinematic synthesis of the eight-bar hinge-lever walking mechanism has been performed using the well-known methods of the Theory of Machines and Mechanisms, in particular, the method of closed vector loops. In order to conduct experimental investigations and simulation of the mechanism motion, the applied software SolidWorks and MapleSim has been used. Findings (results). The structure and geometrical parameters of the eight-bar walking mechanism have been synthesized with the aim to ensure the required trajectory and kinematic characteristics of the supporting foot motion. Originality (novelty). The analytical dependencies describing the trajectory of each hinge of the analysed walking mechanism have been derived and the kinematic optimization synthesis problem has been solved. This allowed to substantiate of the mechanism’s geometrical parameters and to analyse its kinematic characteristics. Practical value. The proposed structure of the walking mechanism can be effectively used in various mobile robotic systems and in transporting and technological machines in order to ensure the possibility of their use on rough terrain where there is no ability to use wheeled and caterpillar drives. Scopes of further investigations. While carrying out further research, it is necessary to analyse the influence of the weight coefficients on the solution of the optimization problem, as well as to take into account the necessity of changing the step length and the foot lifting height during the process of walking according to the surface obstacles sizes.
dc.format.extent88-102
dc.format.pages15
dc.identifier.citationKorendiy V. Structural and kinematic synthesis of the 1-Dof eight-bar walking mechanism with revolute kinematic pairs / Vitaliy Korendiy // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 2. — P. 88–102.
dc.identifier.citationenKorendiy V. Structural and kinematic synthesis of the 1-Dof eight-bar walking mechanism with revolute kinematic pairs / Vitaliy Korendiy // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 2. — P. 88–102.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/42873
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 2 (3), 2017
dc.relation.references[1] J. Billingsley, A. Visala, and M. Dunn, “Robotics in Agriculture and Forestry”, in Springer handbook of robotics, B. Siciliano and O. Khatib, Eds. Berlin Heidelberg: Springer-Verlag, 2008, pp. 1065–1077.
dc.relation.references[2] G. Carbone and M. Ceccarelli, “Legged Robotic Systemes”, in Cutting Edge Robotics, V. Kordic, A. Lazinica, and M. Merdan, Eds. Rijeka, Croatia: InTech, 2005, pp. 553–576.
dc.relation.references[3] E. Garcia, M. A. Jimenez, P. G. De Santos, and M. Armada, “The evolution of robotics research”, IEEE Robot. Autom. Mag., vol. 14, no. 1, pp. 90–103, 2007.
dc.relation.references[4] J. E. Shigley, The Mechanics of Walking Vehicles. Detroit, Michigan, 1960.
dc.relation.references[5] V. Korendiy, “Analysis of Structure and Kinematics of Four-Bar Crank-Rocker Walking Mechanism”, Ukr. J. Mech. Eng. Mater. Sci., vol. 1, no. 2, pp. 21–34, 2015.
dc.relation.references[6] H. Funabashi, K. Ogana, Y. Gotoh, and F. Kojima, “Synthesis of Leg-Mechanisms of Biped Walking Machines (Part I. Synthesis of Ankle-Path-Generator)”, Bull. JSME, vol. 28, no. 237, pp. 537–543, 1985.
dc.relation.references[7] H. Funabashi, K. Ogana, I. Honda, and N. Iwatsuki, “Synthesis of Leg-Mechanism of Biped Walking Machines (Part II. Synthesis of Foot-Driving Mechanism)”, Bull. JSME, vol. 28, no. 237, pp. 544–549, 1985.
dc.relation.references[8] P. A. Simionescu and I. Tempea, “Kinematic and Kinetostatic Simulation of a Leg Mechanism”, in Proceedings of the 10th World Congress on the Theory of Machines and Mechanisms, 1999, pp. 572–577.
dc.relation.references[9] W. B. Shieh and L. W. Tsai, “Design and Optimization of Planar Leg Mechanisms Featuring Symmetrical Foot-Point Paths”, University of Maryland, 1996.
dc.relation.references[10] G. V. P. Babu and N. A. N. Rao, “Design and Analysis of a Low Cost and Easy Operated Leg Mechanism for a Walking Robot”, Int. J. Mech. Ind. Eng., vol. 2, no. 1, pp. 60–64, 2012.
dc.relation.references[11] A. Aan and M. Heinloo, “Analysis and synthesis of the walking linkage of Theo Jansen with a flywheel”, Agron. Res., vol. 12, no. 2, pp. 657–662, 2014.
dc.relation.references[12] O. Al-Araidah, W. Batayneh, T. Darabseh, and S. M. BaniHani, “Conceptual design of a single DOF human-like eight-bar leg mechanism”, Jordan J. Mech. Ind. Eng., vol. 5, no. 4, pp. 285–289, 2011.
dc.relation.references[13] S. Erkaya, “Trajectory optimization of a walking mechanism having revolute joints with clearance using ANFIS approach”, Nonlinear Dyn., vol. 71, no. 1–2, pp. 75–91, 2013.
dc.relation.references[14] F. Moldovan, V. Dolga, O. Ciontos, and C. Pop, “CAD design and analytical model of a twelve bar walking mechanism”, UPB Sci. Bull. Ser. D Mech. Eng., vol. 73, no. 2, pp. 35–48, 2011.
dc.relation.references[15] S. Nansai, N. Rojas, M. R. Elara, and R. Sosa, “Exploration of adaptive gait patterns with a reconfigurable linkage mechanism”, in Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 4661–4668.
dc.relation.references[16] V. M. Korendiy, O. S. Bushko, O. Yu. Kachur, and R. Yu. Skrypnyk, “Rozroblennia krokuiuchoho modulia na osnovi dvokh tsyklovykh rushiiv” [“Developing walking module based on two cycle engines”], Avtomatyzatsiia vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni [Industrial Process Automation in Engineering and Instrumentation], vol. 49, pp. 26–35, 2015. [In Ukrainian].
dc.relation.references[17] Ia. T. Kinytskyi, V. O. Kharzhevskyi, and M. V. Marchenko, Teoriia mekhanizmiv i mashyn v systemi Mathcad [Theory of mechanisms and machines in Mathcad system]. Khmelnytskyi, Ukraine: RVTs KhNU Publ.,2014. [In Ukrainian].
dc.relation.references[18] J. Collard, “Geometrical and Kinematic Optimization of Closed-Loop Multibody Systems”, Université Catholique de Louvain, 2007. Lviv
dc.relation.referencesen[1] J. Billingsley, A. Visala, and M. Dunn, "Robotics in Agriculture and Forestry", in Springer handbook of robotics, B. Siciliano and O. Khatib, Eds. Berlin Heidelberg: Springer-Verlag, 2008, pp. 1065–1077.
dc.relation.referencesen[2] G. Carbone and M. Ceccarelli, "Legged Robotic Systemes", in Cutting Edge Robotics, V. Kordic, A. Lazinica, and M. Merdan, Eds. Rijeka, Croatia: InTech, 2005, pp. 553–576.
dc.relation.referencesen[3] E. Garcia, M. A. Jimenez, P. G. De Santos, and M. Armada, "The evolution of robotics research", IEEE Robot. Autom. Mag., vol. 14, no. 1, pp. 90–103, 2007.
dc.relation.referencesen[4] J. E. Shigley, The Mechanics of Walking Vehicles. Detroit, Michigan, 1960.
dc.relation.referencesen[5] V. Korendiy, "Analysis of Structure and Kinematics of Four-Bar Crank-Rocker Walking Mechanism", Ukr. J. Mech. Eng. Mater. Sci., vol. 1, no. 2, pp. 21–34, 2015.
dc.relation.referencesen[6] H. Funabashi, K. Ogana, Y. Gotoh, and F. Kojima, "Synthesis of Leg-Mechanisms of Biped Walking Machines (Part I. Synthesis of Ankle-Path-Generator)", Bull. JSME, vol. 28, no. 237, pp. 537–543, 1985.
dc.relation.referencesen[7] H. Funabashi, K. Ogana, I. Honda, and N. Iwatsuki, "Synthesis of Leg-Mechanism of Biped Walking Machines (Part II. Synthesis of Foot-Driving Mechanism)", Bull. JSME, vol. 28, no. 237, pp. 544–549, 1985.
dc.relation.referencesen[8] P. A. Simionescu and I. Tempea, "Kinematic and Kinetostatic Simulation of a Leg Mechanism", in Proceedings of the 10th World Congress on the Theory of Machines and Mechanisms, 1999, pp. 572–577.
dc.relation.referencesen[9] W. B. Shieh and L. W. Tsai, "Design and Optimization of Planar Leg Mechanisms Featuring Symmetrical Foot-Point Paths", University of Maryland, 1996.
dc.relation.referencesen[10] G. V. P. Babu and N. A. N. Rao, "Design and Analysis of a Low Cost and Easy Operated Leg Mechanism for a Walking Robot", Int. J. Mech. Ind. Eng., vol. 2, no. 1, pp. 60–64, 2012.
dc.relation.referencesen[11] A. Aan and M. Heinloo, "Analysis and synthesis of the walking linkage of Theo Jansen with a flywheel", Agron. Res., vol. 12, no. 2, pp. 657–662, 2014.
dc.relation.referencesen[12] O. Al-Araidah, W. Batayneh, T. Darabseh, and S. M. BaniHani, "Conceptual design of a single DOF human-like eight-bar leg mechanism", Jordan J. Mech. Ind. Eng., vol. 5, no. 4, pp. 285–289, 2011.
dc.relation.referencesen[13] S. Erkaya, "Trajectory optimization of a walking mechanism having revolute joints with clearance using ANFIS approach", Nonlinear Dyn., vol. 71, no. 1–2, pp. 75–91, 2013.
dc.relation.referencesen[14] F. Moldovan, V. Dolga, O. Ciontos, and C. Pop, "CAD design and analytical model of a twelve bar walking mechanism", UPB Sci. Bull. Ser. D Mech. Eng., vol. 73, no. 2, pp. 35–48, 2011.
dc.relation.referencesen[15] S. Nansai, N. Rojas, M. R. Elara, and R. Sosa, "Exploration of adaptive gait patterns with a reconfigurable linkage mechanism", in Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 4661–4668.
dc.relation.referencesen[16] V. M. Korendiy, O. S. Bushko, O. Yu. Kachur, and R. Yu. Skrypnyk, "Rozroblennia krokuiuchoho modulia na osnovi dvokh tsyklovykh rushiiv" ["Developing walking module based on two cycle engines"], Avtomatyzatsiia vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni [Industrial Process Automation in Engineering and Instrumentation], vol. 49, pp. 26–35, 2015. [In Ukrainian].
dc.relation.referencesen[17] Ia. T. Kinytskyi, V. O. Kharzhevskyi, and M. V. Marchenko, Teoriia mekhanizmiv i mashyn v systemi Mathcad [Theory of mechanisms and machines in Mathcad system]. Khmelnytskyi, Ukraine: RVTs KhNU Publ.,2014. [In Ukrainian].
dc.relation.referencesen[18] J. Collard, "Geometrical and Kinematic Optimization of Closed-Loop Multibody Systems", Université Catholique de Louvain, 2007. Lviv
dc.rights.holder© Національний університет „Львівська політехніка“, 2017
dc.rights.holder© Korendiy V., 2017
dc.subjectwalking mechanism
dc.subjectstructural analysis
dc.subjectkinematic analysis
dc.subjectsynthesis
dc.subjectoptimization
dc.subjectobjective function
dc.subjectgeometrical parameters
dc.subjecttrajectory
dc.subjectspeed
dc.subjectacceleration
dc.titleStructural and kinematic synthesis of the 1-Dof eight-bar walking mechanism with revolute kinematic pairs
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2017v3n2_Korendiy_V-Structural_and_kinematic_88-102.pdf
Size:
937.86 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2017v3n2_Korendiy_V-Structural_and_kinematic_88-102__COVER.png
Size:
500.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.94 KB
Format:
Plain Text
Description: