Особливості одержання та властивості комбінованих гідрогелевих мембран на основі полікапроаміду і кополімерів полівінілпіролідону

dc.citation.epage209
dc.citation.issue2
dc.citation.spage203
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБаран, Н. М.
dc.contributor.authorГриценко, О. М.
dc.contributor.authorМельник, Ю. Я.
dc.contributor.authorЯцульчак, Г. В.
dc.contributor.authorBaran, N. M.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorMelnyk, Yu. Ya.
dc.contributor.authorYaculchak, G. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:15Z
dc.date.available2024-01-22T08:47:15Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractНаведено результати досліджень величини поверхневої адсорбції та міцності під час проривання комбінованих поліамід-гідрогелевих мембран залежно від складу гідрогелевої мембрани-підкладки. Встановлено, що варіювання молекулярної маси ПВП як в структурі кополімеру, так і в модифікувальній суміші, а також часу витримки гідрогелевої плівки у модифікувальному розчині, дають змогу спрямовано регулювати властивості комбінованих мембран, зокрема, їх міцність і проникність.
dc.description.abstractThe research results of surface adsorption magnitude and tensile strength of combined polyamide-hydrogel membranes, depending on the content of the hydrogel lining membrane are presented in the article. It was found that the molecular weight variation of PVP, both in the structure of copolymer and in modifying blend, as well as the time of staying hydrogel film in the modifying solution allow to regulate the properties of combined membranes directly, in particular, its strength and permeability.
dc.format.extent203-209
dc.format.pages7
dc.identifier.citationОсобливості одержання та властивості комбінованих гідрогелевих мембран на основі полікапроаміду і кополімерів полівінілпіролідону / Н. М. Баран, О. М. Гриценко, Ю. Я. Мельник, Г. В. Яцульчак // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Том 4. — № 2. — С. 203–209.
dc.identifier.citationenPeculiarities of obtaining and properties of combined hydrogel membranes based on polycoproamide and polyvinylpyrrolidone copolymers / N. M. Baran, O. M. Grytsenko, Yu. Ya. Melnyk, G. V. Yaculchak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 203–209.
dc.identifier.doidoi.org/10.23939/ctas2021.02.203
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60898
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. Francis X. Quinn, Eithne Kampff, Gerard Smyth, and Vincent J. McBrierty. A, (1988). Study of Water in Poly(N-vinyl-2-pyrrolidone/methyl methacrylate) Copolymer. Macromolecules, 21, 3191–3198. doi.org/10.1021/ma00189a012
dc.relation.references2. Mohana Y. M., Leea K., Premkumar T., Geckeler K. E. (2007). Hydrogel networks as nanоreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer., 48(1), 158–164. doi: 10.1016 / j.polymer.2006.10.045
dc.relation.references3. Rosiak J. M., Yoshii F. (1999). Hydrogels and their medical applications. Nucl. Instrum Methods Phys. Res. Sec. B., 151, 56–64. doi: 10.1016 / S0168-583X (99) 00118-4
dc.relation.references4. Galaev I. Y., Mattiasson B. (1999). Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol,17, 335–340. doi: 10.1016 / s0167-7799 (99) 01345-1
dc.relation.references5. Peppas N., A., Huang Y., Torres-Lugo M., Ward J. H., Zhang J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng., 2, 9–29. doi: 10.1146 / annurev.bioeng.2.1.9
dc.relation.references6. Omidian H., Rocca J. G., Park K. (2005). Advanced in superporous hydrogels. Journal of Controlled Release, 102, 3–12. doi: 10.1016/j.jconrel.2004.09.028
dc.relation.references7. Jiang H., Zeng X. (2013). Microlenses: Properties, Fabrication and Liquid Lenses. CRC Press, 228.
dc.relation.references8. Hoffman A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery reviews, 43, 3-12. doi: 10.1016/s0169-409x(01)00239-3
dc.relation.references9. Peppas N. A., Bures P., Leobandung W., Ichikawa H. (2000). Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 50(1), 27–46. doi: 10.1 -6411(00)00090-4
dc.relation.references10. Peppas N. A. (1986). Hydrogels in Medicine and Pharmacy. Florida: CRC Press Inc., Boca Raton, 1-3. doi.org/10.1002/pi.4980210223
dc.relation.references11. Park K., Shalaby W.S.W. and Park H. (1993). Biodegradable hydrogels for drug delivery, Inc., Lancaster, PA: Basle: Technomic Publishing Co., 252. doi.org/10.1177/088391159400900207
dc.relation.references12. Baldwin S. P., Saltzman W. M. (1998). Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev., 33, 71–86. doi: 10.1016 / s0169-409x (98) 00021-0
dc.relation.references13. Grytsenko О., Pokhmurska А., Kovalchuk R. (2018). Technological features in obtaining highly effective hydrogel dressings for medical purposes. Eastern-European Journal of Enterprise Technologies, 6(6), 6-13. doi: 10.15587/1729-4061.2018.150690
dc.relation.references14. Drury J. L., Mooney D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24, 4337– 4351. doi: 10.1016 / s0142-9612 (03) 00340-5.
dc.relation.references15. Gehrke S. H. (2000). Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci., 102, 473–546.
dc.relation.references16. Manabu S. (1981). Polimery medychnoho pryznachennia. Moskva: Medytsyna, 248.
dc.relation.references17. Lavrov N. A., Kryzhanovskaia T. S. (1995). Poliakrylaty v medytsyni. Plastychni masy, 2,42–43.
dc.relation.references18. Suberlyak O., Grytsenko O., Kochubei V. (2015). The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers. Chemistry & Chemical Technology, 9(4), 429- 434.http://nbuv.gov.ua/UJRN/Chemistry_2015_9_4_8.
dc.relation.references19. By Nicholas A. Peppas, J. Zach Hilt, Ali Khademhosseini, and Robert Langer (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater., 18, 1345–1360. doi: 10.1002/adma.200501612
dc.relation.references20. Suberlyak O. V., Baran N. M., Melnyk Y. Y., Yatsulchak G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3, 121–126.
dc.relation.references21. Melnyk Yu. Ya., Baran N. M., Yatsulchak H. V., Komyshna M. H. (2017). Formuvannia ta vlastyvosti kompozytsiinykh poliamid–hidrohelevykh membran. Visnyk NU“Lvivska politekhnika” “Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia”, 868, 406–412.
dc.relation.references22. Suberliak O. V., Melnyk Yu. Ia., Skorokhoda V. I. 11.04.2011. Pat. Ukrainy № 94173. Natsionalnyi universytet “Lvivska politekhnika”. Opubl. – Biul. No. 7. Suberlyak O. V., Baran N. M., Yatsul’chak H. V. (2017). Physicomechanical properties of the films based on polyamide–polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392–397. https://doi.org/10.1007/s11003-017-0087-6
dc.relation.references23. Kargin V. A., Slonimskiy G. L. (1967). Kratkie ocherki po fiziko-himii polimerov. Moskva: Himiya, 232.
dc.relation.references24. Skorokhoda V., Melnyk Y., Semenyuk N., Suberlyak O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9 (1), 55–59. https://doi.org/10.23939/chcht09.01.055
dc.relation.references25. Fazullin D. D., Mavrin G. V., Melkonyan R. G. (2013). Kompozitsionnyie membranyi s modifitsirovannyim poverhnostnyim sloem. Mezhdunarodnyiy nauchno-issledovatelskiy zhurnal, 9–1 (16). – C. 45–47.
dc.relation.references26. Suberlyak O., Melnyk Yu., Skorokhoda V. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50(6), 889-896. https://doi.org/10.1007/s11003-015-9798-8
dc.relation.references27. Dubyaga V. P., Perepechkin L. P., Katalevskiy E. E. (1981). Polimernyie membranyi. Moskva: Himiya, 232.
dc.relation.references28. Suberliak O. V., Baran N. M., Melnyk O. V. (2008). Doslidzhennia vzaiemodii v systemi poliamid – polivinilpirolidon v rozchynakh. Visnyk NU “Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 609, 356–360.
dc.relation.referencesen1. Francis X. Quinn, Eithne Kampff, Gerard Smyth, and Vincent J. McBrierty. A, (1988). Study of Water in Poly(N-vinyl-2-pyrrolidone/methyl methacrylate) Copolymer. Macromolecules, 21, 3191–3198. doi.org/10.1021/ma00189a012
dc.relation.referencesen2. Mohana Y. M., Leea K., Premkumar T., Geckeler K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer., 48(1), 158–164. doi: 10.1016, j.polymer.2006.10.045
dc.relation.referencesen3. Rosiak J. M., Yoshii F. (1999). Hydrogels and their medical applications. Nucl. Instrum Methods Phys. Res. Sec. B., 151, 56–64. doi: 10.1016, S0168-583X (99) 00118-4
dc.relation.referencesen4. Galaev I. Y., Mattiasson B. (1999). Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol,17, 335–340. doi: 10.1016, s0167-7799 (99) 01345-1
dc.relation.referencesen5. Peppas N., A., Huang Y., Torres-Lugo M., Ward J. H., Zhang J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng., 2, 9–29. doi: 10.1146, annurev.bioeng.2.1.9
dc.relation.referencesen6. Omidian H., Rocca J. G., Park K. (2005). Advanced in superporous hydrogels. Journal of Controlled Release, 102, 3–12. doi: 10.1016/j.jconrel.2004.09.028
dc.relation.referencesen7. Jiang H., Zeng X. (2013). Microlenses: Properties, Fabrication and Liquid Lenses. CRC Press, 228.
dc.relation.referencesen8. Hoffman A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery reviews, 43, 3-12. doi: 10.1016/s0169-409x(01)00239-3
dc.relation.referencesen9. Peppas N. A., Bures P., Leobandung W., Ichikawa H. (2000). Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 50(1), 27–46. doi: 10.1 -6411(00)00090-4
dc.relation.referencesen10. Peppas N. A. (1986). Hydrogels in Medicine and Pharmacy. Florida: CRC Press Inc., Boca Raton, 1-3. doi.org/10.1002/pi.4980210223
dc.relation.referencesen11. Park K., Shalaby W.S.W. and Park H. (1993). Biodegradable hydrogels for drug delivery, Inc., Lancaster, PA: Basle: Technomic Publishing Co., 252. doi.org/10.1177/088391159400900207
dc.relation.referencesen12. Baldwin S. P., Saltzman W. M. (1998). Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev., 33, 71–86. doi: 10.1016, s0169-409x (98) 00021-0
dc.relation.referencesen13. Grytsenko O., Pokhmurska A., Kovalchuk R. (2018). Technological features in obtaining highly effective hydrogel dressings for medical purposes. Eastern-European Journal of Enterprise Technologies, 6(6), 6-13. doi: 10.15587/1729-4061.2018.150690
dc.relation.referencesen14. Drury J. L., Mooney D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24, 4337– 4351. doi: 10.1016, s0142-9612 (03) 00340-5.
dc.relation.referencesen15. Gehrke S. H. (2000). Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci., 102, 473–546.
dc.relation.referencesen16. Manabu S. (1981). Polimery medychnoho pryznachennia. Moskva: Medytsyna, 248.
dc.relation.referencesen17. Lavrov N. A., Kryzhanovskaia T. S. (1995). Poliakrylaty v medytsyni. Plastychni masy, 2,42–43.
dc.relation.referencesen18. Suberlyak O., Grytsenko O., Kochubei V. (2015). The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers. Chemistry & Chemical Technology, 9(4), 429- 434.http://nbuv.gov.ua/UJRN/Chemistry_2015_9_4_8.
dc.relation.referencesen19. By Nicholas A. Peppas, J. Zach Hilt, Ali Khademhosseini, and Robert Langer (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater., 18, 1345–1360. doi: 10.1002/adma.200501612
dc.relation.referencesen20. Suberlyak O. V., Baran N. M., Melnyk Y. Y., Yatsulchak G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3, 121–126.
dc.relation.referencesen21. Melnyk Yu. Ya., Baran N. M., Yatsulchak H. V., Komyshna M. H. (2017). Formuvannia ta vlastyvosti kompozytsiinykh poliamid–hidrohelevykh membran. Visnyk NU"Lvivska politekhnika" "Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia", 868, 406–412.
dc.relation.referencesen22. Suberliak O. V., Melnyk Yu. Ia., Skorokhoda V. I. 11.04.2011. Pat. Ukrainy No 94173. Natsionalnyi universytet "Lvivska politekhnika". Opubl, Biul. No. 7. Suberlyak O. V., Baran N. M., Yatsul’chak H. V. (2017). Physicomechanical properties of the films based on polyamide–polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392–397. https://doi.org/10.1007/s11003-017-0087-6
dc.relation.referencesen23. Kargin V. A., Slonimskiy G. L. (1967). Kratkie ocherki po fiziko-himii polimerov. Moskva: Himiya, 232.
dc.relation.referencesen24. Skorokhoda V., Melnyk Y., Semenyuk N., Suberlyak O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9 (1), 55–59. https://doi.org/10.23939/chcht09.01.055
dc.relation.referencesen25. Fazullin D. D., Mavrin G. V., Melkonyan R. G. (2013). Kompozitsionnyie membranyi s modifitsirovannyim poverhnostnyim sloem. Mezhdunarodnyiy nauchno-issledovatelskiy zhurnal, 9–1 (16), P. 45–47.
dc.relation.referencesen26. Suberlyak O., Melnyk Yu., Skorokhoda V. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50(6), 889-896. https://doi.org/10.1007/s11003-015-9798-8
dc.relation.referencesen27. Dubyaga V. P., Perepechkin L. P., Katalevskiy E. E. (1981). Polimernyie membranyi. Moskva: Himiya, 232.
dc.relation.referencesen28. Suberliak O. V., Baran N. M., Melnyk O. V. (2008). Doslidzhennia vzaiemodii v systemi poliamid – polivinilpirolidon v rozchynakh. Visnyk NU "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 609, 356–360.
dc.relation.urihttp://nbuv.gov.ua/UJRN/Chemistry_2015_9_4_8
dc.relation.urihttps://doi.org/10.1007/s11003-017-0087-6
dc.relation.urihttps://doi.org/10.23939/chcht09.01.055
dc.relation.urihttps://doi.org/10.1007/s11003-015-9798-8
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectгідрогелева мембрана
dc.subject2-гідроксіетилметакрилат
dc.subjectполівінілпіролідон
dc.subjectполікапроамід
dc.subjectпроникність
dc.subjecthydrogel membrane
dc.subject2-hydroxyethyl methacrylate
dc.subjectpolyvinylpyrrolidone
dc.subjectpolycaproamide
dc.subjectpermeability
dc.titleОсобливості одержання та властивості комбінованих гідрогелевих мембран на основі полікапроаміду і кополімерів полівінілпіролідону
dc.title.alternativePeculiarities of obtaining and properties of combined hydrogel membranes based on polycoproamide and polyvinylpyrrolidone copolymers
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n2_Baran_N_M-Peculiarities_of_obtaining_203-209.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n2_Baran_N_M-Peculiarities_of_obtaining_203-209__COVER.png
Size:
491.08 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: