Особливості одержання та властивості комбінованих гідрогелевих мембран на основі полікапроаміду і кополімерів полівінілпіролідону
dc.citation.epage | 209 | |
dc.citation.issue | 2 | |
dc.citation.spage | 203 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Баран, Н. М. | |
dc.contributor.author | Гриценко, О. М. | |
dc.contributor.author | Мельник, Ю. Я. | |
dc.contributor.author | Яцульчак, Г. В. | |
dc.contributor.author | Baran, N. M. | |
dc.contributor.author | Grytsenko, O. M. | |
dc.contributor.author | Melnyk, Yu. Ya. | |
dc.contributor.author | Yaculchak, G. V. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:47:15Z | |
dc.date.available | 2024-01-22T08:47:15Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Наведено результати досліджень величини поверхневої адсорбції та міцності під час проривання комбінованих поліамід-гідрогелевих мембран залежно від складу гідрогелевої мембрани-підкладки. Встановлено, що варіювання молекулярної маси ПВП як в структурі кополімеру, так і в модифікувальній суміші, а також часу витримки гідрогелевої плівки у модифікувальному розчині, дають змогу спрямовано регулювати властивості комбінованих мембран, зокрема, їх міцність і проникність. | |
dc.description.abstract | The research results of surface adsorption magnitude and tensile strength of combined polyamide-hydrogel membranes, depending on the content of the hydrogel lining membrane are presented in the article. It was found that the molecular weight variation of PVP, both in the structure of copolymer and in modifying blend, as well as the time of staying hydrogel film in the modifying solution allow to regulate the properties of combined membranes directly, in particular, its strength and permeability. | |
dc.format.extent | 203-209 | |
dc.format.pages | 7 | |
dc.identifier.citation | Особливості одержання та властивості комбінованих гідрогелевих мембран на основі полікапроаміду і кополімерів полівінілпіролідону / Н. М. Баран, О. М. Гриценко, Ю. Я. Мельник, Г. В. Яцульчак // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Том 4. — № 2. — С. 203–209. | |
dc.identifier.citationen | Peculiarities of obtaining and properties of combined hydrogel membranes based on polycoproamide and polyvinylpyrrolidone copolymers / N. M. Baran, O. M. Grytsenko, Yu. Ya. Melnyk, G. V. Yaculchak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 203–209. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.02.203 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60898 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (4), 2021 | |
dc.relation.references | 1. Francis X. Quinn, Eithne Kampff, Gerard Smyth, and Vincent J. McBrierty. A, (1988). Study of Water in Poly(N-vinyl-2-pyrrolidone/methyl methacrylate) Copolymer. Macromolecules, 21, 3191–3198. doi.org/10.1021/ma00189a012 | |
dc.relation.references | 2. Mohana Y. M., Leea K., Premkumar T., Geckeler K. E. (2007). Hydrogel networks as nanоreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer., 48(1), 158–164. doi: 10.1016 / j.polymer.2006.10.045 | |
dc.relation.references | 3. Rosiak J. M., Yoshii F. (1999). Hydrogels and their medical applications. Nucl. Instrum Methods Phys. Res. Sec. B., 151, 56–64. doi: 10.1016 / S0168-583X (99) 00118-4 | |
dc.relation.references | 4. Galaev I. Y., Mattiasson B. (1999). Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol,17, 335–340. doi: 10.1016 / s0167-7799 (99) 01345-1 | |
dc.relation.references | 5. Peppas N., A., Huang Y., Torres-Lugo M., Ward J. H., Zhang J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng., 2, 9–29. doi: 10.1146 / annurev.bioeng.2.1.9 | |
dc.relation.references | 6. Omidian H., Rocca J. G., Park K. (2005). Advanced in superporous hydrogels. Journal of Controlled Release, 102, 3–12. doi: 10.1016/j.jconrel.2004.09.028 | |
dc.relation.references | 7. Jiang H., Zeng X. (2013). Microlenses: Properties, Fabrication and Liquid Lenses. CRC Press, 228. | |
dc.relation.references | 8. Hoffman A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery reviews, 43, 3-12. doi: 10.1016/s0169-409x(01)00239-3 | |
dc.relation.references | 9. Peppas N. A., Bures P., Leobandung W., Ichikawa H. (2000). Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 50(1), 27–46. doi: 10.1 -6411(00)00090-4 | |
dc.relation.references | 10. Peppas N. A. (1986). Hydrogels in Medicine and Pharmacy. Florida: CRC Press Inc., Boca Raton, 1-3. doi.org/10.1002/pi.4980210223 | |
dc.relation.references | 11. Park K., Shalaby W.S.W. and Park H. (1993). Biodegradable hydrogels for drug delivery, Inc., Lancaster, PA: Basle: Technomic Publishing Co., 252. doi.org/10.1177/088391159400900207 | |
dc.relation.references | 12. Baldwin S. P., Saltzman W. M. (1998). Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev., 33, 71–86. doi: 10.1016 / s0169-409x (98) 00021-0 | |
dc.relation.references | 13. Grytsenko О., Pokhmurska А., Kovalchuk R. (2018). Technological features in obtaining highly effective hydrogel dressings for medical purposes. Eastern-European Journal of Enterprise Technologies, 6(6), 6-13. doi: 10.15587/1729-4061.2018.150690 | |
dc.relation.references | 14. Drury J. L., Mooney D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24, 4337– 4351. doi: 10.1016 / s0142-9612 (03) 00340-5. | |
dc.relation.references | 15. Gehrke S. H. (2000). Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci., 102, 473–546. | |
dc.relation.references | 16. Manabu S. (1981). Polimery medychnoho pryznachennia. Moskva: Medytsyna, 248. | |
dc.relation.references | 17. Lavrov N. A., Kryzhanovskaia T. S. (1995). Poliakrylaty v medytsyni. Plastychni masy, 2,42–43. | |
dc.relation.references | 18. Suberlyak O., Grytsenko O., Kochubei V. (2015). The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers. Chemistry & Chemical Technology, 9(4), 429- 434.http://nbuv.gov.ua/UJRN/Chemistry_2015_9_4_8. | |
dc.relation.references | 19. By Nicholas A. Peppas, J. Zach Hilt, Ali Khademhosseini, and Robert Langer (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater., 18, 1345–1360. doi: 10.1002/adma.200501612 | |
dc.relation.references | 20. Suberlyak O. V., Baran N. M., Melnyk Y. Y., Yatsulchak G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3, 121–126. | |
dc.relation.references | 21. Melnyk Yu. Ya., Baran N. M., Yatsulchak H. V., Komyshna M. H. (2017). Formuvannia ta vlastyvosti kompozytsiinykh poliamid–hidrohelevykh membran. Visnyk NU“Lvivska politekhnika” “Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia”, 868, 406–412. | |
dc.relation.references | 22. Suberliak O. V., Melnyk Yu. Ia., Skorokhoda V. I. 11.04.2011. Pat. Ukrainy № 94173. Natsionalnyi universytet “Lvivska politekhnika”. Opubl. – Biul. No. 7. Suberlyak O. V., Baran N. M., Yatsul’chak H. V. (2017). Physicomechanical properties of the films based on polyamide–polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392–397. https://doi.org/10.1007/s11003-017-0087-6 | |
dc.relation.references | 23. Kargin V. A., Slonimskiy G. L. (1967). Kratkie ocherki po fiziko-himii polimerov. Moskva: Himiya, 232. | |
dc.relation.references | 24. Skorokhoda V., Melnyk Y., Semenyuk N., Suberlyak O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9 (1), 55–59. https://doi.org/10.23939/chcht09.01.055 | |
dc.relation.references | 25. Fazullin D. D., Mavrin G. V., Melkonyan R. G. (2013). Kompozitsionnyie membranyi s modifitsirovannyim poverhnostnyim sloem. Mezhdunarodnyiy nauchno-issledovatelskiy zhurnal, 9–1 (16). – C. 45–47. | |
dc.relation.references | 26. Suberlyak O., Melnyk Yu., Skorokhoda V. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50(6), 889-896. https://doi.org/10.1007/s11003-015-9798-8 | |
dc.relation.references | 27. Dubyaga V. P., Perepechkin L. P., Katalevskiy E. E. (1981). Polimernyie membranyi. Moskva: Himiya, 232. | |
dc.relation.references | 28. Suberliak O. V., Baran N. M., Melnyk O. V. (2008). Doslidzhennia vzaiemodii v systemi poliamid – polivinilpirolidon v rozchynakh. Visnyk NU “Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 609, 356–360. | |
dc.relation.referencesen | 1. Francis X. Quinn, Eithne Kampff, Gerard Smyth, and Vincent J. McBrierty. A, (1988). Study of Water in Poly(N-vinyl-2-pyrrolidone/methyl methacrylate) Copolymer. Macromolecules, 21, 3191–3198. doi.org/10.1021/ma00189a012 | |
dc.relation.referencesen | 2. Mohana Y. M., Leea K., Premkumar T., Geckeler K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer., 48(1), 158–164. doi: 10.1016, j.polymer.2006.10.045 | |
dc.relation.referencesen | 3. Rosiak J. M., Yoshii F. (1999). Hydrogels and their medical applications. Nucl. Instrum Methods Phys. Res. Sec. B., 151, 56–64. doi: 10.1016, S0168-583X (99) 00118-4 | |
dc.relation.referencesen | 4. Galaev I. Y., Mattiasson B. (1999). Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol,17, 335–340. doi: 10.1016, s0167-7799 (99) 01345-1 | |
dc.relation.referencesen | 5. Peppas N., A., Huang Y., Torres-Lugo M., Ward J. H., Zhang J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng., 2, 9–29. doi: 10.1146, annurev.bioeng.2.1.9 | |
dc.relation.referencesen | 6. Omidian H., Rocca J. G., Park K. (2005). Advanced in superporous hydrogels. Journal of Controlled Release, 102, 3–12. doi: 10.1016/j.jconrel.2004.09.028 | |
dc.relation.referencesen | 7. Jiang H., Zeng X. (2013). Microlenses: Properties, Fabrication and Liquid Lenses. CRC Press, 228. | |
dc.relation.referencesen | 8. Hoffman A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery reviews, 43, 3-12. doi: 10.1016/s0169-409x(01)00239-3 | |
dc.relation.referencesen | 9. Peppas N. A., Bures P., Leobandung W., Ichikawa H. (2000). Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 50(1), 27–46. doi: 10.1 -6411(00)00090-4 | |
dc.relation.referencesen | 10. Peppas N. A. (1986). Hydrogels in Medicine and Pharmacy. Florida: CRC Press Inc., Boca Raton, 1-3. doi.org/10.1002/pi.4980210223 | |
dc.relation.referencesen | 11. Park K., Shalaby W.S.W. and Park H. (1993). Biodegradable hydrogels for drug delivery, Inc., Lancaster, PA: Basle: Technomic Publishing Co., 252. doi.org/10.1177/088391159400900207 | |
dc.relation.referencesen | 12. Baldwin S. P., Saltzman W. M. (1998). Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev., 33, 71–86. doi: 10.1016, s0169-409x (98) 00021-0 | |
dc.relation.referencesen | 13. Grytsenko O., Pokhmurska A., Kovalchuk R. (2018). Technological features in obtaining highly effective hydrogel dressings for medical purposes. Eastern-European Journal of Enterprise Technologies, 6(6), 6-13. doi: 10.15587/1729-4061.2018.150690 | |
dc.relation.referencesen | 14. Drury J. L., Mooney D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24, 4337– 4351. doi: 10.1016, s0142-9612 (03) 00340-5. | |
dc.relation.referencesen | 15. Gehrke S. H. (2000). Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci., 102, 473–546. | |
dc.relation.referencesen | 16. Manabu S. (1981). Polimery medychnoho pryznachennia. Moskva: Medytsyna, 248. | |
dc.relation.referencesen | 17. Lavrov N. A., Kryzhanovskaia T. S. (1995). Poliakrylaty v medytsyni. Plastychni masy, 2,42–43. | |
dc.relation.referencesen | 18. Suberlyak O., Grytsenko O., Kochubei V. (2015). The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers. Chemistry & Chemical Technology, 9(4), 429- 434.http://nbuv.gov.ua/UJRN/Chemistry_2015_9_4_8. | |
dc.relation.referencesen | 19. By Nicholas A. Peppas, J. Zach Hilt, Ali Khademhosseini, and Robert Langer (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater., 18, 1345–1360. doi: 10.1002/adma.200501612 | |
dc.relation.referencesen | 20. Suberlyak O. V., Baran N. M., Melnyk Y. Y., Yatsulchak G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3, 121–126. | |
dc.relation.referencesen | 21. Melnyk Yu. Ya., Baran N. M., Yatsulchak H. V., Komyshna M. H. (2017). Formuvannia ta vlastyvosti kompozytsiinykh poliamid–hidrohelevykh membran. Visnyk NU"Lvivska politekhnika" "Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia", 868, 406–412. | |
dc.relation.referencesen | 22. Suberliak O. V., Melnyk Yu. Ia., Skorokhoda V. I. 11.04.2011. Pat. Ukrainy No 94173. Natsionalnyi universytet "Lvivska politekhnika". Opubl, Biul. No. 7. Suberlyak O. V., Baran N. M., Yatsul’chak H. V. (2017). Physicomechanical properties of the films based on polyamide–polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392–397. https://doi.org/10.1007/s11003-017-0087-6 | |
dc.relation.referencesen | 23. Kargin V. A., Slonimskiy G. L. (1967). Kratkie ocherki po fiziko-himii polimerov. Moskva: Himiya, 232. | |
dc.relation.referencesen | 24. Skorokhoda V., Melnyk Y., Semenyuk N., Suberlyak O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9 (1), 55–59. https://doi.org/10.23939/chcht09.01.055 | |
dc.relation.referencesen | 25. Fazullin D. D., Mavrin G. V., Melkonyan R. G. (2013). Kompozitsionnyie membranyi s modifitsirovannyim poverhnostnyim sloem. Mezhdunarodnyiy nauchno-issledovatelskiy zhurnal, 9–1 (16), P. 45–47. | |
dc.relation.referencesen | 26. Suberlyak O., Melnyk Yu., Skorokhoda V. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50(6), 889-896. https://doi.org/10.1007/s11003-015-9798-8 | |
dc.relation.referencesen | 27. Dubyaga V. P., Perepechkin L. P., Katalevskiy E. E. (1981). Polimernyie membranyi. Moskva: Himiya, 232. | |
dc.relation.referencesen | 28. Suberliak O. V., Baran N. M., Melnyk O. V. (2008). Doslidzhennia vzaiemodii v systemi poliamid – polivinilpirolidon v rozchynakh. Visnyk NU "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 609, 356–360. | |
dc.relation.uri | http://nbuv.gov.ua/UJRN/Chemistry_2015_9_4_8 | |
dc.relation.uri | https://doi.org/10.1007/s11003-017-0087-6 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.01.055 | |
dc.relation.uri | https://doi.org/10.1007/s11003-015-9798-8 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | гідрогелева мембрана | |
dc.subject | 2-гідроксіетилметакрилат | |
dc.subject | полівінілпіролідон | |
dc.subject | полікапроамід | |
dc.subject | проникність | |
dc.subject | hydrogel membrane | |
dc.subject | 2-hydroxyethyl methacrylate | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | polycaproamide | |
dc.subject | permeability | |
dc.title | Особливості одержання та властивості комбінованих гідрогелевих мембран на основі полікапроаміду і кополімерів полівінілпіролідону | |
dc.title.alternative | Peculiarities of obtaining and properties of combined hydrogel membranes based on polycoproamide and polyvinylpyrrolidone copolymers | |
dc.type | Article |
Files
License bundle
1 - 1 of 1