Study of the effective radii of ultrasonic transducers

dc.citation.epage16
dc.citation.issue3
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage10
dc.citation.volume85
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationSE NDI “SYSTEMA”
dc.contributor.authorShpak, Oleksandr
dc.contributor.authorDuviria, Dariia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-14T06:40:29Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe study on the effective radii of ultrasonic transducers for hydrophone calibration at the National State Primary Standard of the Unit of Ultrasonic Pressure in Water (NDETU AUV-02-2018) is presented and the appropriate method is described. The impact of the effective radius on measurement distance and diffraction loss coefficients is evaluated. The uncertainty calculation of the effective radius measurement of ultrasonic transducers is provided, and its influence on the accuracy of hydrophone calibration is assessed. Considerable attention is given to estimating the measurement distance between the hydrophone and the ultrasonic transducer, which significantly affects the accuracy of hydrophone calibration.
dc.format.extent10-16
dc.format.pages7
dc.identifier.citationShpak O. Study of the effective radii of ultrasonic transducers / Oleksandr Shpak, Dariia Duviria // Measuring Equipment and Metrology : scientific journal. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 3. — P. 10–16.
dc.identifier.citationenShpak O. Study of the effective radii of ultrasonic transducers / Oleksandr Shpak, Dariia Duviria // Measuring Equipment and Metrology : scientific journal. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 3. — P. 10–16.
dc.identifier.doidoi.org/10.23939/istcmtm2024.03.010
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64541
dc.language.isoen
dc.publisherВидавництво Національного університету “Львівська політехніка”
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 3 (85), 2024
dc.relation.ispartofMeasuring Equipment and Metrology : scientific journal, 3 (85), 2024
dc.relation.references[1] W. Lee, Y. Roh, “Ultrasonic transducers for medical diagnostic imaging”, Biomed. Eng. Lett., vol. 7, p. 91–97, 2017. DOI: 10.1007/s13534-017-0021-8.
dc.relation.references[2] J. Joseph, B. Ma, B. T. Khuri-Yakub, “Applications of Capacitive Micromachined Ultrasonic Transducers: A Comprehensive Review”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 69, No. 2, pp. 456–467, 2022. DOI: 10.1109/TUFFC.2021.3112917.
dc.relation.references[3] X. Guangzhen, W. Volker, Y. Ping, “Review of field characterization techniques for high intensity therapeutic ultrasound”, Metrologia, Vol. 58, p. 22001, 2021. DOI: 10.1088/1681-7575/abe02e.
dc.relation.references[4] K. Ashhar, M. Noor-A-Rahim, M. O. Khyam, C. B. Soh, “A Narrowband Ultrasonic Ranging Method for Multiple Moving Sensor Nodes”. IEEE Sens. J., vol. 19, pp. 6289–6297, 2019. DOI: 10.1109/JSEN.2019.2909580.
dc.relation.references[5] J. F. Tressler, Piezoelectric Transducer Designs for Sonar Applications. In: A. Safari, E. K. Akdoğan, (eds.) Piezoelectric and Acoustic Materials for Transducer Applications, Springer, Boston, 2008, pp. 217–239. DOI: 10.1007/978-0-387-76540-2_11.
dc.relation.references[6] S. H. Park, S. Choi, K. Y. Jhang, “Porosity Evaluation of Additively Manufactured Components Using Deep Learningbased Ultrasonic Nondestructive Testing”, Int. J. Precis. Eng. Manuf. Green Technol., Vol. 9, pp. 395–407, 2021. DOI: 10.1007/s40684-021-00319-6.
dc.relation.references[7] R. Gupta, D. Mitchell, J. Blanche, S. Harper, W. Tang, K. Pancholi, L. Baines, D. G. Bucknall, D. Flynn, “A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materials”, J. Compos. Sci., Vol. 5, p. 319, 2021. DOI: 10.3390/jcs5120319.
dc.relation.references[8] S. J. Kumar, A. Kamaraj, K. C. Sundaram, G. Shobana, G. Kirubakaran, “A comprehensive review on accuracy in ultrasonic flow measurement using reconfigurable systems and deep learning approaches”, AIP Adv., Vol. 10, p. 105221, 2020. DOI: 10.1063/5.0022154.
dc.relation.references[9] Z. Fang, R. Su, L. Hu, X. Fu, “A simple and easy-implemented time-of-flight determination method for liquid ultrasonic flow meters based on ultrasonic signal onset detection and multiplezero-crossing technique”, Measurement, Vol. 168, p. 108398, 2021. DOI: 10.1016/j.measurement.2020.108398.
dc.relation.references[10] D. Duviriak, O. Shpak, V. Parakuda, “The standard of unit of ultrasonic pressure in aqueous medium”, ISTCMTM, Vol. 80, No. 3, pp. 58–63, 2019. DOI: 10.23939/istcmtm2019.03.058.
dc.relation.references[11] IEC 62127-2:2007 Ultrasonics - Hydrophones – Part 2: Calibration for ultrasonic fields up to 40 MHz, 2007, https://www.intertekinform.com/en-gb/Standards/IEC62127-2-1-2-564956_SAIG_IEC_IEC_1288934/.
dc.relation.references[12] DSTU-N RMG 43:2006 Metrology. Application of the “Uncertainty Measurement Guidelines”, RMG 43-2001, IDT, 2006, https://online.budstandart.com/ua/catalog/docpage.html?id_doc=77097.
dc.relation.references[13] B. Fay, “Numerical calculation of diffraction losses in the sound field of ultrasonic transducers” Acustica, vol. 36, pp. 209–213, 1976, https://ingentaconnect.com/content/dav/aaua/1976/00000036/00000003/art00013?crawler=true.
dc.relation.references[14] O. Shpak, D. Duviriak, V. Parakuda, I Kizlivskyi, “Experimental investigation on the effective radiating area of ultrasonic transducers with the aim of increasing the reproduction accuracy of the unit of ultrasonic pressure in water”, UMG, Vol. 1, pp. 44–50, 2022. DOI: 10.24027/2306-7039.1.2022.258819.
dc.relation.references[15] R. C. Chivers, L. Bosselaar, P. R. Filmore, “Effective area to be used in diffraction corrections”, The Journal of the Acoustical Society of America, Vol. 68, No. 1, pp. 80–84, 1980. DOI: 10.1121/1.384507.
dc.relation.referencesen[1] W. Lee, Y. Roh, "Ultrasonic transducers for medical diagnostic imaging", Biomed. Eng. Lett., vol. 7, p. 91–97, 2017. DOI: 10.1007/s13534-017-0021-8.
dc.relation.referencesen[2] J. Joseph, B. Ma, B. T. Khuri-Yakub, "Applications of Capacitive Micromachined Ultrasonic Transducers: A Comprehensive Review", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 69, No. 2, pp. 456–467, 2022. DOI: 10.1109/TUFFC.2021.3112917.
dc.relation.referencesen[3] X. Guangzhen, W. Volker, Y. Ping, "Review of field characterization techniques for high intensity therapeutic ultrasound", Metrologia, Vol. 58, p. 22001, 2021. DOI: 10.1088/1681-7575/abe02e.
dc.relation.referencesen[4] K. Ashhar, M. Noor-A-Rahim, M. O. Khyam, C. B. Soh, "A Narrowband Ultrasonic Ranging Method for Multiple Moving Sensor Nodes". IEEE Sens. J., vol. 19, pp. 6289–6297, 2019. DOI: 10.1109/JSEN.2019.2909580.
dc.relation.referencesen[5] J. F. Tressler, Piezoelectric Transducer Designs for Sonar Applications. In: A. Safari, E. K. Akdoğan, (eds.) Piezoelectric and Acoustic Materials for Transducer Applications, Springer, Boston, 2008, pp. 217–239. DOI: 10.1007/978-0-387-76540-2_11.
dc.relation.referencesen[6] S. H. Park, S. Choi, K. Y. Jhang, "Porosity Evaluation of Additively Manufactured Components Using Deep Learningbased Ultrasonic Nondestructive Testing", Int. J. Precis. Eng. Manuf. Green Technol., Vol. 9, pp. 395–407, 2021. DOI: 10.1007/s40684-021-00319-6.
dc.relation.referencesen[7] R. Gupta, D. Mitchell, J. Blanche, S. Harper, W. Tang, K. Pancholi, L. Baines, D. G. Bucknall, D. Flynn, "A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materials", J. Compos. Sci., Vol. 5, p. 319, 2021. DOI: 10.3390/jcs5120319.
dc.relation.referencesen[8] S. J. Kumar, A. Kamaraj, K. C. Sundaram, G. Shobana, G. Kirubakaran, "A comprehensive review on accuracy in ultrasonic flow measurement using reconfigurable systems and deep learning approaches", AIP Adv., Vol. 10, p. 105221, 2020. DOI: 10.1063/5.0022154.
dc.relation.referencesen[9] Z. Fang, R. Su, L. Hu, X. Fu, "A simple and easy-implemented time-of-flight determination method for liquid ultrasonic flow meters based on ultrasonic signal onset detection and multiplezero-crossing technique", Measurement, Vol. 168, p. 108398, 2021. DOI: 10.1016/j.measurement.2020.108398.
dc.relation.referencesen[10] D. Duviriak, O. Shpak, V. Parakuda, "The standard of unit of ultrasonic pressure in aqueous medium", ISTCMTM, Vol. 80, No. 3, pp. 58–63, 2019. DOI: 10.23939/istcmtm2019.03.058.
dc.relation.referencesen[11] IEC 62127-2:2007 Ultrasonics - Hydrophones – Part 2: Calibration for ultrasonic fields up to 40 MHz, 2007, https://www.intertekinform.com/en-gb/Standards/IEC62127-2-1-2-564956_SAIG_IEC_IEC_1288934/.
dc.relation.referencesen[12] DSTU-N RMG 43:2006 Metrology. Application of the "Uncertainty Measurement Guidelines", RMG 43-2001, IDT, 2006, https://online.budstandart.com/ua/catalog/docpage.html?id_doc=77097.
dc.relation.referencesen[13] B. Fay, "Numerical calculation of diffraction losses in the sound field of ultrasonic transducers" Acustica, vol. 36, pp. 209–213, 1976, https://ingentaconnect.com/content/dav/aaua/1976/00000036/00000003/art00013?crawler=true.
dc.relation.referencesen[14] O. Shpak, D. Duviriak, V. Parakuda, I Kizlivskyi, "Experimental investigation on the effective radiating area of ultrasonic transducers with the aim of increasing the reproduction accuracy of the unit of ultrasonic pressure in water", UMG, Vol. 1, pp. 44–50, 2022. DOI: 10.24027/2306-7039.1.2022.258819.
dc.relation.referencesen[15] R. C. Chivers, L. Bosselaar, P. R. Filmore, "Effective area to be used in diffraction corrections", The Journal of the Acoustical Society of America, Vol. 68, No. 1, pp. 80–84, 1980. DOI: 10.1121/1.384507.
dc.relation.urihttps://www.intertekinform.com/en-gb/Standards/IEC62127-2-1-2-564956_SAIG_IEC_IEC_1288934/
dc.relation.urihttps://online.budstandart.com/ua/catalog/docpage.html?id_doc=77097
dc.relation.urihttps://ingentaconnect.com/content/dav/aaua/1976/00000036/00000003/art00013?crawler=true
dc.rights.holder© Національний університет “Львівська політехніка”, 2027
dc.subjectUltrasonic pressure
dc.subjectHydrophone
dc.subjectUltrasonic transducer
dc.subjectEffective radius
dc.subjectUncertainty
dc.titleStudy of the effective radii of ultrasonic transducers
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v85n3_Shpak_O-Study_of_the_effective_radii_10-16.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v85n3_Shpak_O-Study_of_the_effective_radii_10-16__COVER.png
Size:
466.94 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: