Сорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран

dc.citation.epage205
dc.citation.issue2
dc.citation.spage198
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University in Košice
dc.contributor.authorБаран, Н. М.
dc.contributor.authorГриценко, Т. О.
dc.contributor.authorЄвтушенко, М. Л.
dc.contributor.authorГриценко, О. М.
dc.contributor.authorДулебова, Л.
dc.contributor.authorBaran, N. M.
dc.contributor.authorHrytsenko, T. O.
dc.contributor.authorYevtushenko, M. L.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorDulebova, L.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:24Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractВстановлено ефективність використання розчинів на основі сумішей поліаміду з полівінілпіролідоном (ПВП) у мурашиній кислоті як модифікаторів високопроникних гідрогелевих мембран на основі кополімерів ПВП з 2-гідроксіетилметакрилатом. Модифікування забезпечує формування композиційних мембран зі зміцненими селек- тивнопроникними нано- та мікрошарами. Показано можливість прогнозованого регу- лювання сорбційно-дифузійних властивостей композиційних гідрогелевих мембран за допомогою підбирання складу та концентрації модифікувального розчину та складу гідрогелевої плівки-підкладки.
dc.description.abstractThe efficiency of using solutions based on mixtures of polyamide with polyvinylpyrrolidone (PVP) in formic acid as modifiers of highly permeable hydrogel membranes based on copolymers of PVP with 2-hydroxyethyl methacrylate was established. The modification ensures the formation of composite membranes with strengthened selectively permeable nano- and microlayers. The possibility of predictable regulation of the sorption-diffusion properties of composite hydrogel membranes by selecting the composition and concentration of the modifying solution and the composition of the hydrogel film substrate is shown.
dc.format.extent198-205
dc.format.pages8
dc.identifier.citationСорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран / Н. М. Баран, Т. О. Гриценко, М. Л. Євтушенко, О. М. Гриценко, Л. Дулебова // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2024. — Том 7. — № 2. — С. 198–205.
dc.identifier.citation2015Сорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран / Баран Н. М. та ін. // Chemistry, Technology and Application of Substances, Львів. 2024. Том 7. № 2. С. 198–205.
dc.identifier.citationenAPABaran, N. M., Hrytsenko, T. O., Yevtushenko, M. L., Grytsenko, O. M., & Dulebova, L. (2024). Sorbtsiino-dyfuziini vlastyvosti modyfikovanykh hidrohelevykh polivinilpirolidonvmisnykh membran [Sorption-diffusion properties of modified hydrogel polyvinylpyrrolidone-containing membranes]. Chemistry, Technology and Application of Substances, 7(2), 198-205. Lviv Politechnic Publishing House. [in Ukrainian].
dc.identifier.citationenCHICAGOBaran N. M., Hrytsenko T. O., Yevtushenko M. L., Grytsenko O. M., Dulebova L. (2024) Sorbtsiino-dyfuziini vlastyvosti modyfikovanykh hidrohelevykh polivinilpirolidonvmisnykh membran [Sorption-diffusion properties of modified hydrogel polyvinylpyrrolidone-containing membranes]. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 198-205 [in Ukrainian].
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.198
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124457
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Madduma-Bandarage, U. S. K.; Madihally, S. V.(2020). Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci., 138, e50376.https://doi.org/10.1002/app.50376.
dc.relation.references2. Popa, L.; Violeta Ghica, M.; Elena Dinu-Pîrvu, C.; Tudoroiu, E.-E. Introductory chapter: Hydrogels in comprehensive overviews, recent trends on their broad applications. In Hydrogels – From Tradition to Innovative Platforms with Multiple Applications; Popa, L., Violeta Ghica, M., Dinu-Pîrvu, C. E., Eds.; IntechOpen: London,UK, 2023. https://doi.org/10.5772/intechopen.108767.
dc.relation.references3. Kaith, B. S.; Singh, A.; Sharma, A. K.; Sud, D.(2021). Hydrogels: Synthesis, classification, properties and potential applications. A brief review. J. Polym. Environ. 29, 3827–3841.https://doi.org/10.1007/s10924-021-02184-5.
dc.relation.references4. Vigata, M.; Meinert, C.; Hutmacher, D. W.; Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12, 1188. https://doi.org/10.3390/pharmaceutics12121188.
dc.relation.references5. Chen, Q.; He, Y.; Li, Q.; Yang, K.; Sun, L.; Xu, H.; Wang, R. (2023). Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun., 53, 100696. https://doi.org/10.1016/j.colcom.2023.100696.
dc.relation.references6. Li, X.; Xu, M.; Geng, Z.; Liu, Y. (2023). Functional hydrogels for the repair and regeneration of tissue defects. Front. Bioeng. Biotechnol., 11, 1190171. https://doi.org/10.3389/fbioe.2023.1190171.
dc.relation.references7. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.
dc.relation.references8. Taaca, K. L. M.; Prieto, E. I.; Vasquez, M. R., Jr.(2022). Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers,14, 2560. https://doi.org/10.3390/polym14132560.
dc.relation.references9. Trombino, S.; Sole, R.; Curcio, F.; Cassano, R.(2023). Polymeric based hydrogel membranes for biomedical applications. Membranes, 13, 576.https://doi.org/10.3390/membranes13060576.
dc.relation.references10. Suberlyak, O. V.; Melnyk, Y. Y.; Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Mater. Sci., 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8.
dc.relation.references11. Suberlyak, O.; Melnyk, J.; Skorokhoda, V.(2009). Formation and properties of hydrogel membranes based cross-linked copolymers of methacrylates and water-soluble polymers. Eng. Biomater., 12, 5–8.
dc.relation.references12. Nazari, S.; Abdelrasoul, A. (2022). Impact of membrane modification and surface immobilization techniques on the hemocompatibility of hemodialysis membranes: A critical Review. Membranes, 12, 1063.https://doi.org/10.3390/membranes12111063.
dc.relation.references13. Zhang, Q.; Zhou, R.; Peng, X.; Li, N.; Dai, Z. (2023). Development of support layers and their impact on the performance of thin film composite membranes (TFC) for water treatment. Polymers, 15, 3290.https://doi.org/10.3390/polym15153290.
dc.relation.references14. Lv, H.; Wang, X.; Fu, Q.; Si, Y.; Yin, X.; Li, X.; Sun, G.; Yu, J.; Ding, B. (2017) A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci., 506, 442–451. https://doi.org/10.1016/j.jcis.2017.07.060.
dc.relation.references15. Suberlyak, O. V., Baran, N. M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.references16. Baran, N. M.; Grytsenko, T. O.; Dulebova, L.(2023). The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/ hydrogel membranes of increased strength. Chemistry, technology and application of substances, 6(2), 132–138.
dc.relation.references17. Suberlyak, O.; Baran, N.; Yatsul’chak, H. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Mater. Sci.,53, 392–397.
dc.relation.references18. Li, Z.; Peng, S.; Zhang, W.; Zhang, J.; Jiao, Y.; Li, R.; Shen, L.; Lin, H.; Xu, Y. (2023). Innovative role of polyvinylpyrrolidone in tailoring polyamide layer for highperformance nanofiltration membranes. Desalination, 564,116767. https://doi.org/10.1016/j.desal.2023.116767.
dc.relation.references19. Peng, L. E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C. Y. (2022). A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci., 641, 119871. https://doi.org/10.1016/j.memsci.2021.119871.
dc.relation.references20. Xu, G.-R.; Xu, J.-M.; Feng, H.-J.; Zhao, H.-L.; Wu, S.-B. (2017). Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination,417, 19–35. https://doi.org/10.1016/j.desal.2017.05.011.
dc.relation.references21. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.
dc.relation.references22. Zawada, A. M.; Lang, T.; Ottillinger, B.; Kircelli, F.; Stauss-Grabo, M.; Kennedy, J. P. (2022). Impact of hydrophilic modification of synthetic dialysis membranes on hemocompatibility and performance. Membranes, 12, 932. https://doi.org/10.3390/membranes12100932.
dc.relation.references23. Suberlyak, O.; Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018;136–214. https://doi.org/10.5772/intechopen.72082.
dc.relation.references24. Suberlyak, O., Grytsenko, O., Kochubei, V.(2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. DOI: https://doi.org/10.23939/chcht09.04.429.
dc.relation.references25. Baran, N. М.; Grytsenko, О. М.; Moravskyi, V. S. (2022). Influence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes. Chemistry, technology and application of substances,5(2), 171–177. https://doi.org/10.23939/ctas2022.02.171.
dc.relation.referencesen1. Madduma-Bandarage, U. S. K.; Madihally, S. V.(2020). Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci., 138, e50376.https://doi.org/10.1002/app.50376.
dc.relation.referencesen2. Popa, L.; Violeta Ghica, M.; Elena Dinu-Pîrvu, C.; Tudoroiu, E.-E. Introductory chapter: Hydrogels in comprehensive overviews, recent trends on their broad applications. In Hydrogels – From Tradition to Innovative Platforms with Multiple Applications; Popa, L., Violeta Ghica, M., Dinu-Pîrvu, C. E., Eds.; IntechOpen: London,UK, 2023. https://doi.org/10.5772/intechopen.108767.
dc.relation.referencesen3. Kaith, B. S.; Singh, A.; Sharma, A. K.; Sud, D.(2021). Hydrogels: Synthesis, classification, properties and potential applications. A brief review. J. Polym. Environ. 29, 3827–3841.https://doi.org/10.1007/s10924-021-02184-5.
dc.relation.referencesen4. Vigata, M.; Meinert, C.; Hutmacher, D. W.; Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12, 1188. https://doi.org/10.3390/pharmaceutics12121188.
dc.relation.referencesen5. Chen, Q.; He, Y.; Li, Q.; Yang, K.; Sun, L.; Xu, H.; Wang, R. (2023). Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun., 53, 100696. https://doi.org/10.1016/j.colcom.2023.100696.
dc.relation.referencesen6. Li, X.; Xu, M.; Geng, Z.; Liu, Y. (2023). Functional hydrogels for the repair and regeneration of tissue defects. Front. Bioeng. Biotechnol., 11, 1190171. https://doi.org/10.3389/fbioe.2023.1190171.
dc.relation.referencesen7. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.
dc.relation.referencesen8. Taaca, K. L. M.; Prieto, E. I.; Vasquez, M. R., Jr.(2022). Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers,14, 2560. https://doi.org/10.3390/polym14132560.
dc.relation.referencesen9. Trombino, S.; Sole, R.; Curcio, F.; Cassano, R.(2023). Polymeric based hydrogel membranes for biomedical applications. Membranes, 13, 576.https://doi.org/10.3390/membranes13060576.
dc.relation.referencesen10. Suberlyak, O. V.; Melnyk, Y. Y.; Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Mater. Sci., 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8.
dc.relation.referencesen11. Suberlyak, O.; Melnyk, J.; Skorokhoda, V.(2009). Formation and properties of hydrogel membranes based cross-linked copolymers of methacrylates and water-soluble polymers. Eng. Biomater., 12, 5–8.
dc.relation.referencesen12. Nazari, S.; Abdelrasoul, A. (2022). Impact of membrane modification and surface immobilization techniques on the hemocompatibility of hemodialysis membranes: A critical Review. Membranes, 12, 1063.https://doi.org/10.3390/membranes12111063.
dc.relation.referencesen13. Zhang, Q.; Zhou, R.; Peng, X.; Li, N.; Dai, Z. (2023). Development of support layers and their impact on the performance of thin film composite membranes (TFC) for water treatment. Polymers, 15, 3290.https://doi.org/10.3390/polym15153290.
dc.relation.referencesen14. Lv, H.; Wang, X.; Fu, Q.; Si, Y.; Yin, X.; Li, X.; Sun, G.; Yu, J.; Ding, B. (2017) A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci., 506, 442–451. https://doi.org/10.1016/j.jcis.2017.07.060.
dc.relation.referencesen15. Suberlyak, O. V., Baran, N. M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.referencesen16. Baran, N. M.; Grytsenko, T. O.; Dulebova, L.(2023). The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/ hydrogel membranes of increased strength. Chemistry, technology and application of substances, 6(2), 132–138.
dc.relation.referencesen17. Suberlyak, O.; Baran, N.; Yatsul’chak, H. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Mater. Sci.,53, 392–397.
dc.relation.referencesen18. Li, Z.; Peng, S.; Zhang, W.; Zhang, J.; Jiao, Y.; Li, R.; Shen, L.; Lin, H.; Xu, Y. (2023). Innovative role of polyvinylpyrrolidone in tailoring polyamide layer for highperformance nanofiltration membranes. Desalination, 564,116767. https://doi.org/10.1016/j.desal.2023.116767.
dc.relation.referencesen19. Peng, L. E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C. Y. (2022). A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci., 641, 119871. https://doi.org/10.1016/j.memsci.2021.119871.
dc.relation.referencesen20. Xu, G.-R.; Xu, J.-M.; Feng, H.-J.; Zhao, H.-L.; Wu, S.-B. (2017). Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination,417, 19–35. https://doi.org/10.1016/j.desal.2017.05.011.
dc.relation.referencesen21. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.
dc.relation.referencesen22. Zawada, A. M.; Lang, T.; Ottillinger, B.; Kircelli, F.; Stauss-Grabo, M.; Kennedy, J. P. (2022). Impact of hydrophilic modification of synthetic dialysis membranes on hemocompatibility and performance. Membranes, 12, 932. https://doi.org/10.3390/membranes12100932.
dc.relation.referencesen23. Suberlyak, O.; Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018;136–214. https://doi.org/10.5772/intechopen.72082.
dc.relation.referencesen24. Suberlyak, O., Grytsenko, O., Kochubei, V.(2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. DOI: https://doi.org/10.23939/chcht09.04.429.
dc.relation.referencesen25. Baran, N. M.; Grytsenko, O. M.; Moravskyi, V. S. (2022). Influence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes. Chemistry, technology and application of substances,5(2), 171–177. https://doi.org/10.23939/ctas2022.02.171.
dc.relation.urihttps://doi.org/10.1002/app.50376
dc.relation.urihttps://doi.org/10.5772/intechopen.108767
dc.relation.urihttps://doi.org/10.1007/s10924-021-02184-5
dc.relation.urihttps://doi.org/10.3390/pharmaceutics12121188
dc.relation.urihttps://doi.org/10.1016/j.colcom.2023.100696
dc.relation.urihttps://doi.org/10.3389/fbioe.2023.1190171
dc.relation.urihttps://doi.org/10.3390/ma16062468
dc.relation.urihttps://doi.org/10.3390/polym14132560
dc.relation.urihttps://doi.org/10.3390/membranes13060576
dc.relation.urihttps://doi.org/10.1007/s11003-015-9798-8
dc.relation.urihttps://doi.org/10.3390/membranes12111063
dc.relation.urihttps://doi.org/10.3390/polym15153290
dc.relation.urihttps://doi.org/10.1016/j.jcis.2017.07.060
dc.relation.urihttp://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.urihttps://doi.org/10.1016/j.desal.2023.116767
dc.relation.urihttps://doi.org/10.1016/j.memsci.2021.119871
dc.relation.urihttps://doi.org/10.1016/j.desal.2017.05.011
dc.relation.urihttps://doi.org/10.3390/membranes12100932
dc.relation.urihttps://doi.org/10.5772/intechopen.72082
dc.relation.urihttps://doi.org/10.23939/chcht09.04.429
dc.relation.urihttps://doi.org/10.23939/ctas2022.02.171
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectкомпозиційні мембрани
dc.subjectгідрогелеві мембрани
dc.subjectпроникність
dc.subjectкополімери
dc.subjectгідрогелі
dc.subjectполівінілпіролідон
dc.subject2-гідроксіетилметакрилат
dc.subjectполіамід
dc.subjectcomposite membranes
dc.subjecthydrogel membranes
dc.subjectpermeability
dc.subjectcopolymers
dc.subjecthydrogels
dc.subjectpolyvinylpyrrolidone
dc.subject2-hydroxyethyl methacrylate
dc.subjectpolyamide
dc.titleСорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран
dc.title.alternativeSorption-diffusion properties of modified hydrogel polyvinylpyrrolidone-containing membranes
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Baran_N_M-Sorption_diffusion_properties_198-205.pdf
Size:
751.87 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: