Сорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран
| dc.citation.epage | 205 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 198 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Технічний університет Кошице | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Technical University in Košice | |
| dc.contributor.author | Баран, Н. М. | |
| dc.contributor.author | Гриценко, Т. О. | |
| dc.contributor.author | Євтушенко, М. Л. | |
| dc.contributor.author | Гриценко, О. М. | |
| dc.contributor.author | Дулебова, Л. | |
| dc.contributor.author | Baran, N. M. | |
| dc.contributor.author | Hrytsenko, T. O. | |
| dc.contributor.author | Yevtushenko, M. L. | |
| dc.contributor.author | Grytsenko, O. M. | |
| dc.contributor.author | Dulebova, L. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-15T13:53:24Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | Встановлено ефективність використання розчинів на основі сумішей поліаміду з полівінілпіролідоном (ПВП) у мурашиній кислоті як модифікаторів високопроникних гідрогелевих мембран на основі кополімерів ПВП з 2-гідроксіетилметакрилатом. Модифікування забезпечує формування композиційних мембран зі зміцненими селек- тивнопроникними нано- та мікрошарами. Показано можливість прогнозованого регу- лювання сорбційно-дифузійних властивостей композиційних гідрогелевих мембран за допомогою підбирання складу та концентрації модифікувального розчину та складу гідрогелевої плівки-підкладки. | |
| dc.description.abstract | The efficiency of using solutions based on mixtures of polyamide with polyvinylpyrrolidone (PVP) in formic acid as modifiers of highly permeable hydrogel membranes based on copolymers of PVP with 2-hydroxyethyl methacrylate was established. The modification ensures the formation of composite membranes with strengthened selectively permeable nano- and microlayers. The possibility of predictable regulation of the sorption-diffusion properties of composite hydrogel membranes by selecting the composition and concentration of the modifying solution and the composition of the hydrogel film substrate is shown. | |
| dc.format.extent | 198-205 | |
| dc.format.pages | 8 | |
| dc.identifier.citation | Сорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран / Н. М. Баран, Т. О. Гриценко, М. Л. Євтушенко, О. М. Гриценко, Л. Дулебова // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2024. — Том 7. — № 2. — С. 198–205. | |
| dc.identifier.citation2015 | Сорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран / Баран Н. М. та ін. // Chemistry, Technology and Application of Substances, Львів. 2024. Том 7. № 2. С. 198–205. | |
| dc.identifier.citationenAPA | Baran, N. M., Hrytsenko, T. O., Yevtushenko, M. L., Grytsenko, O. M., & Dulebova, L. (2024). Sorbtsiino-dyfuziini vlastyvosti modyfikovanykh hidrohelevykh polivinilpirolidonvmisnykh membran [Sorption-diffusion properties of modified hydrogel polyvinylpyrrolidone-containing membranes]. Chemistry, Technology and Application of Substances, 7(2), 198-205. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Baran N. M., Hrytsenko T. O., Yevtushenko M. L., Grytsenko O. M., Dulebova L. (2024) Sorbtsiino-dyfuziini vlastyvosti modyfikovanykh hidrohelevykh polivinilpirolidonvmisnykh membran [Sorption-diffusion properties of modified hydrogel polyvinylpyrrolidone-containing membranes]. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 198-205 [in Ukrainian]. | |
| dc.identifier.doi | https://doi.org/10.23939/ctas2024.02.198 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124457 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (7), 2024 | |
| dc.relation.references | 1. Madduma-Bandarage, U. S. K.; Madihally, S. V.(2020). Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci., 138, e50376.https://doi.org/10.1002/app.50376. | |
| dc.relation.references | 2. Popa, L.; Violeta Ghica, M.; Elena Dinu-Pîrvu, C.; Tudoroiu, E.-E. Introductory chapter: Hydrogels in comprehensive overviews, recent trends on their broad applications. In Hydrogels – From Tradition to Innovative Platforms with Multiple Applications; Popa, L., Violeta Ghica, M., Dinu-Pîrvu, C. E., Eds.; IntechOpen: London,UK, 2023. https://doi.org/10.5772/intechopen.108767. | |
| dc.relation.references | 3. Kaith, B. S.; Singh, A.; Sharma, A. K.; Sud, D.(2021). Hydrogels: Synthesis, classification, properties and potential applications. A brief review. J. Polym. Environ. 29, 3827–3841.https://doi.org/10.1007/s10924-021-02184-5. | |
| dc.relation.references | 4. Vigata, M.; Meinert, C.; Hutmacher, D. W.; Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12, 1188. https://doi.org/10.3390/pharmaceutics12121188. | |
| dc.relation.references | 5. Chen, Q.; He, Y.; Li, Q.; Yang, K.; Sun, L.; Xu, H.; Wang, R. (2023). Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun., 53, 100696. https://doi.org/10.1016/j.colcom.2023.100696. | |
| dc.relation.references | 6. Li, X.; Xu, M.; Geng, Z.; Liu, Y. (2023). Functional hydrogels for the repair and regeneration of tissue defects. Front. Bioeng. Biotechnol., 11, 1190171. https://doi.org/10.3389/fbioe.2023.1190171. | |
| dc.relation.references | 7. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468. | |
| dc.relation.references | 8. Taaca, K. L. M.; Prieto, E. I.; Vasquez, M. R., Jr.(2022). Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers,14, 2560. https://doi.org/10.3390/polym14132560. | |
| dc.relation.references | 9. Trombino, S.; Sole, R.; Curcio, F.; Cassano, R.(2023). Polymeric based hydrogel membranes for biomedical applications. Membranes, 13, 576.https://doi.org/10.3390/membranes13060576. | |
| dc.relation.references | 10. Suberlyak, O. V.; Melnyk, Y. Y.; Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Mater. Sci., 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8. | |
| dc.relation.references | 11. Suberlyak, O.; Melnyk, J.; Skorokhoda, V.(2009). Formation and properties of hydrogel membranes based cross-linked copolymers of methacrylates and water-soluble polymers. Eng. Biomater., 12, 5–8. | |
| dc.relation.references | 12. Nazari, S.; Abdelrasoul, A. (2022). Impact of membrane modification and surface immobilization techniques on the hemocompatibility of hemodialysis membranes: A critical Review. Membranes, 12, 1063.https://doi.org/10.3390/membranes12111063. | |
| dc.relation.references | 13. Zhang, Q.; Zhou, R.; Peng, X.; Li, N.; Dai, Z. (2023). Development of support layers and their impact on the performance of thin film composite membranes (TFC) for water treatment. Polymers, 15, 3290.https://doi.org/10.3390/polym15153290. | |
| dc.relation.references | 14. Lv, H.; Wang, X.; Fu, Q.; Si, Y.; Yin, X.; Li, X.; Sun, G.; Yu, J.; Ding, B. (2017) A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci., 506, 442–451. https://doi.org/10.1016/j.jcis.2017.07.060. | |
| dc.relation.references | 15. Suberlyak, O. V., Baran, N. M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19 | |
| dc.relation.references | 16. Baran, N. M.; Grytsenko, T. O.; Dulebova, L.(2023). The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/ hydrogel membranes of increased strength. Chemistry, technology and application of substances, 6(2), 132–138. | |
| dc.relation.references | 17. Suberlyak, O.; Baran, N.; Yatsul’chak, H. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Mater. Sci.,53, 392–397. | |
| dc.relation.references | 18. Li, Z.; Peng, S.; Zhang, W.; Zhang, J.; Jiao, Y.; Li, R.; Shen, L.; Lin, H.; Xu, Y. (2023). Innovative role of polyvinylpyrrolidone in tailoring polyamide layer for highperformance nanofiltration membranes. Desalination, 564,116767. https://doi.org/10.1016/j.desal.2023.116767. | |
| dc.relation.references | 19. Peng, L. E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C. Y. (2022). A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci., 641, 119871. https://doi.org/10.1016/j.memsci.2021.119871. | |
| dc.relation.references | 20. Xu, G.-R.; Xu, J.-M.; Feng, H.-J.; Zhao, H.-L.; Wu, S.-B. (2017). Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination,417, 19–35. https://doi.org/10.1016/j.desal.2017.05.011. | |
| dc.relation.references | 21. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468. | |
| dc.relation.references | 22. Zawada, A. M.; Lang, T.; Ottillinger, B.; Kircelli, F.; Stauss-Grabo, M.; Kennedy, J. P. (2022). Impact of hydrophilic modification of synthetic dialysis membranes on hemocompatibility and performance. Membranes, 12, 932. https://doi.org/10.3390/membranes12100932. | |
| dc.relation.references | 23. Suberlyak, O.; Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018;136–214. https://doi.org/10.5772/intechopen.72082. | |
| dc.relation.references | 24. Suberlyak, O., Grytsenko, O., Kochubei, V.(2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. DOI: https://doi.org/10.23939/chcht09.04.429. | |
| dc.relation.references | 25. Baran, N. М.; Grytsenko, О. М.; Moravskyi, V. S. (2022). Influence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes. Chemistry, technology and application of substances,5(2), 171–177. https://doi.org/10.23939/ctas2022.02.171. | |
| dc.relation.referencesen | 1. Madduma-Bandarage, U. S. K.; Madihally, S. V.(2020). Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci., 138, e50376.https://doi.org/10.1002/app.50376. | |
| dc.relation.referencesen | 2. Popa, L.; Violeta Ghica, M.; Elena Dinu-Pîrvu, C.; Tudoroiu, E.-E. Introductory chapter: Hydrogels in comprehensive overviews, recent trends on their broad applications. In Hydrogels – From Tradition to Innovative Platforms with Multiple Applications; Popa, L., Violeta Ghica, M., Dinu-Pîrvu, C. E., Eds.; IntechOpen: London,UK, 2023. https://doi.org/10.5772/intechopen.108767. | |
| dc.relation.referencesen | 3. Kaith, B. S.; Singh, A.; Sharma, A. K.; Sud, D.(2021). Hydrogels: Synthesis, classification, properties and potential applications. A brief review. J. Polym. Environ. 29, 3827–3841.https://doi.org/10.1007/s10924-021-02184-5. | |
| dc.relation.referencesen | 4. Vigata, M.; Meinert, C.; Hutmacher, D. W.; Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12, 1188. https://doi.org/10.3390/pharmaceutics12121188. | |
| dc.relation.referencesen | 5. Chen, Q.; He, Y.; Li, Q.; Yang, K.; Sun, L.; Xu, H.; Wang, R. (2023). Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun., 53, 100696. https://doi.org/10.1016/j.colcom.2023.100696. | |
| dc.relation.referencesen | 6. Li, X.; Xu, M.; Geng, Z.; Liu, Y. (2023). Functional hydrogels for the repair and regeneration of tissue defects. Front. Bioeng. Biotechnol., 11, 1190171. https://doi.org/10.3389/fbioe.2023.1190171. | |
| dc.relation.referencesen | 7. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468. | |
| dc.relation.referencesen | 8. Taaca, K. L. M.; Prieto, E. I.; Vasquez, M. R., Jr.(2022). Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers,14, 2560. https://doi.org/10.3390/polym14132560. | |
| dc.relation.referencesen | 9. Trombino, S.; Sole, R.; Curcio, F.; Cassano, R.(2023). Polymeric based hydrogel membranes for biomedical applications. Membranes, 13, 576.https://doi.org/10.3390/membranes13060576. | |
| dc.relation.referencesen | 10. Suberlyak, O. V.; Melnyk, Y. Y.; Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Mater. Sci., 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8. | |
| dc.relation.referencesen | 11. Suberlyak, O.; Melnyk, J.; Skorokhoda, V.(2009). Formation and properties of hydrogel membranes based cross-linked copolymers of methacrylates and water-soluble polymers. Eng. Biomater., 12, 5–8. | |
| dc.relation.referencesen | 12. Nazari, S.; Abdelrasoul, A. (2022). Impact of membrane modification and surface immobilization techniques on the hemocompatibility of hemodialysis membranes: A critical Review. Membranes, 12, 1063.https://doi.org/10.3390/membranes12111063. | |
| dc.relation.referencesen | 13. Zhang, Q.; Zhou, R.; Peng, X.; Li, N.; Dai, Z. (2023). Development of support layers and their impact on the performance of thin film composite membranes (TFC) for water treatment. Polymers, 15, 3290.https://doi.org/10.3390/polym15153290. | |
| dc.relation.referencesen | 14. Lv, H.; Wang, X.; Fu, Q.; Si, Y.; Yin, X.; Li, X.; Sun, G.; Yu, J.; Ding, B. (2017) A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci., 506, 442–451. https://doi.org/10.1016/j.jcis.2017.07.060. | |
| dc.relation.referencesen | 15. Suberlyak, O. V., Baran, N. M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19 | |
| dc.relation.referencesen | 16. Baran, N. M.; Grytsenko, T. O.; Dulebova, L.(2023). The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/ hydrogel membranes of increased strength. Chemistry, technology and application of substances, 6(2), 132–138. | |
| dc.relation.referencesen | 17. Suberlyak, O.; Baran, N.; Yatsul’chak, H. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Mater. Sci.,53, 392–397. | |
| dc.relation.referencesen | 18. Li, Z.; Peng, S.; Zhang, W.; Zhang, J.; Jiao, Y.; Li, R.; Shen, L.; Lin, H.; Xu, Y. (2023). Innovative role of polyvinylpyrrolidone in tailoring polyamide layer for highperformance nanofiltration membranes. Desalination, 564,116767. https://doi.org/10.1016/j.desal.2023.116767. | |
| dc.relation.referencesen | 19. Peng, L. E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C. Y. (2022). A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci., 641, 119871. https://doi.org/10.1016/j.memsci.2021.119871. | |
| dc.relation.referencesen | 20. Xu, G.-R.; Xu, J.-M.; Feng, H.-J.; Zhao, H.-L.; Wu, S.-B. (2017). Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination,417, 19–35. https://doi.org/10.1016/j.desal.2017.05.011. | |
| dc.relation.referencesen | 21. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468. | |
| dc.relation.referencesen | 22. Zawada, A. M.; Lang, T.; Ottillinger, B.; Kircelli, F.; Stauss-Grabo, M.; Kennedy, J. P. (2022). Impact of hydrophilic modification of synthetic dialysis membranes on hemocompatibility and performance. Membranes, 12, 932. https://doi.org/10.3390/membranes12100932. | |
| dc.relation.referencesen | 23. Suberlyak, O.; Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018;136–214. https://doi.org/10.5772/intechopen.72082. | |
| dc.relation.referencesen | 24. Suberlyak, O., Grytsenko, O., Kochubei, V.(2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. DOI: https://doi.org/10.23939/chcht09.04.429. | |
| dc.relation.referencesen | 25. Baran, N. M.; Grytsenko, O. M.; Moravskyi, V. S. (2022). Influence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes. Chemistry, technology and application of substances,5(2), 171–177. https://doi.org/10.23939/ctas2022.02.171. | |
| dc.relation.uri | https://doi.org/10.1002/app.50376 | |
| dc.relation.uri | https://doi.org/10.5772/intechopen.108767 | |
| dc.relation.uri | https://doi.org/10.1007/s10924-021-02184-5 | |
| dc.relation.uri | https://doi.org/10.3390/pharmaceutics12121188 | |
| dc.relation.uri | https://doi.org/10.1016/j.colcom.2023.100696 | |
| dc.relation.uri | https://doi.org/10.3389/fbioe.2023.1190171 | |
| dc.relation.uri | https://doi.org/10.3390/ma16062468 | |
| dc.relation.uri | https://doi.org/10.3390/polym14132560 | |
| dc.relation.uri | https://doi.org/10.3390/membranes13060576 | |
| dc.relation.uri | https://doi.org/10.1007/s11003-015-9798-8 | |
| dc.relation.uri | https://doi.org/10.3390/membranes12111063 | |
| dc.relation.uri | https://doi.org/10.3390/polym15153290 | |
| dc.relation.uri | https://doi.org/10.1016/j.jcis.2017.07.060 | |
| dc.relation.uri | http://nbuv.gov.ua/UJRN/Vchem_2018_3_19 | |
| dc.relation.uri | https://doi.org/10.1016/j.desal.2023.116767 | |
| dc.relation.uri | https://doi.org/10.1016/j.memsci.2021.119871 | |
| dc.relation.uri | https://doi.org/10.1016/j.desal.2017.05.011 | |
| dc.relation.uri | https://doi.org/10.3390/membranes12100932 | |
| dc.relation.uri | https://doi.org/10.5772/intechopen.72082 | |
| dc.relation.uri | https://doi.org/10.23939/chcht09.04.429 | |
| dc.relation.uri | https://doi.org/10.23939/ctas2022.02.171 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | композиційні мембрани | |
| dc.subject | гідрогелеві мембрани | |
| dc.subject | проникність | |
| dc.subject | кополімери | |
| dc.subject | гідрогелі | |
| dc.subject | полівінілпіролідон | |
| dc.subject | 2-гідроксіетилметакрилат | |
| dc.subject | поліамід | |
| dc.subject | composite membranes | |
| dc.subject | hydrogel membranes | |
| dc.subject | permeability | |
| dc.subject | copolymers | |
| dc.subject | hydrogels | |
| dc.subject | polyvinylpyrrolidone | |
| dc.subject | 2-hydroxyethyl methacrylate | |
| dc.subject | polyamide | |
| dc.title | Сорбційно-дифузійні властивості модифікованих гідрогелевих полівінілпіролідонвмісних мембран | |
| dc.title.alternative | Sorption-diffusion properties of modified hydrogel polyvinylpyrrolidone-containing membranes | |
| dc.type | Article |