Інтенсифікація окисної деструкції бензену натрію гіпохлоритом під дією ультразвукового випромінювання

dc.citation.epage28
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage22
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут хімічної технології
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Chemical Technology, Mumbai
dc.contributor.authorЗнак, З. О.
dc.contributor.authorГогейт, П. Р.
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorМних, Р. В.
dc.contributor.authorТанекар, П.
dc.contributor.authorZnak, Z. O.
dc.contributor.authorGogate, P. R.
dc.contributor.authorSukhatskyi, Yu. V.
dc.contributor.authorMnykh, R. V.
dc.contributor.authorThanekar, P.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:29Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено процес взаємодії бензену з натрію гіпохлоритом у модельному середовищі під дією ультразвукового випромінювання різної потужності за дозованого подавання розчину окисника. Перебіг процесу оцінювали за зміною значення окисно-відновного потенціалу середовища в часі. Методом спектрофотометричного аналізу встановлено, що внаслідок взаємодії з натрію гіпохлоритом у кавітаційних полях відбувається практично повна мінералізація бензену. Показано, що окисна деструкція бензену відбувається головно за рахунок продуктів сонолізу води.
dc.description.abstractThe process of the interaction of benzene with sodium hypochlorite in a model environment under the action of ultrasonic radiation of different power and under the metered supply of an oxidant solution was investigated. The course of the process was evaluated by the change in the value of the redox potential of the medium over time. By the method of spectrophotometric analysis, it was established that as a result of interaction with sodium hypochlorite in cavitation fields, almost complete mineralization of benzene occurs. It is shown that the oxidative destruction of benzene mainly occurs due to the products of sonolysis of water.
dc.format.extent22-28
dc.format.pages7
dc.identifier.citationІнтенсифікація окисної деструкції бензену натрію гіпохлоритом під дією ультразвукового випромінювання / З. О. Знак, П. Р. Гогейт, Ю. В. Сухацький, Р. В. Мних, П. Танекар // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 22–28.
dc.identifier.citationenIntensification of oxidative destruction of benzene by sodium hypochlorite under the effect of ultrasonic radiation / Z. O. Znak, P. R. Gogate, Yu. V. Sukhatskyi, R. V. Mnykh, P. Thanekar // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 22–28.
dc.identifier.doidoi.org/10.23939/ctas2023.02.022
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63681
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Meckenstock, R.U., Boll, M., Mouttaki, H., Koelschbach, P., Weyrauch, P., Dong, X., Himmelberg, A.M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. Biotechnol. 26 92-118. doi: 10.1159/000441358 https://doi.org/10.1159/000441358
dc.relation.references2. Ohio Department of Health, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), (2009). http://www.odh.ohio.gov/∼/media/ODH/ASSETS/Files/eh/HAS/btex.ashx.
dc.relation.references3. Atashgahi, S., Hornung, B., Van Der Waals, M.J., Da Rocha, U.N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A.J.M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8, 1-12. DOI:10.1038/s41598-018-22617-x https://doi.org/10.1038/s41598-018-22617-x
dc.relation.references4. Ming, H. Yu. H., Zhang, H., Li, H., Pan, K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012) . Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys. 137, 113-117. doi.org/10.1016/j.matchemphys.2012.02.076 https://doi.org/10.1016/j.matchemphys.2012.02.076
dc.relation.references5. Braeutigam, P. , Wu, Z.L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol. 32, 745-753. doi.org/10.1002/ceat.200800626 https://doi.org/10.1002/ceat.200800626
dc.relation.references6. Ramteke, L.P. , Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. Eng. Chem. 28, 247-260. https://doi.org/10.1016/j.jiec.2015.02.022
dc.relation.references7. Barik, A.J. , Gogate, P.R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrason. Sonochem. 30, 70-78. doi.org/10.1016/j.ultsonch.2015.11.007 https://doi.org/10.1016/j.ultsonch.2015.11.007
dc.relation.references8. Dhanke, P.B., Wagh, S.M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam. 6, 20-32. doi: 10.1016/j.emcon.2019.12.001. https://doi.org/10.1016/j.emcon.2019.12.001
dc.relation.references9. Innocenzi, V., Prisciandaro, M., Centofanti, M., Veglio, F. (2019). Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced Fenton process for degradation of azo-dyes. J. Environ. Chem. Eng. 7, 103171. doi.org/10.1016/j.jece.2019.103171 https://doi.org/10.1016/j.jece.2019.103171
dc.relation.references10. Thanekar, P., Gogate, P.R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry, 70, 105296. doi.org/10.1016/j.ultsonch.2020.105296 https://doi.org/10.1016/j.ultsonch.2020.105296
dc.relation.references11. Sukhatskiy, Y., Znak, Z., Zin, O., & Chupinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. doi: 10.23939/chcht15.02.284 https://doi.org/10.23939/chcht15.02.284
dc.relation.references12. Rajoriya, S., Carpenter, J., Saharan, V.K., Pandit, A.B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Rev. Chem. Eng. 32, 379-411. doi: 10.1515/revce-015-0075. https://doi.org/10.1515/revce-2015-0075
dc.relation.references13. Rajoriya, S. , Bargole, S., Saharan, V.K. (2017). Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrason. Sonochem. 37, 192-202. doi.org/10.1016/j.ultsonch.2017.01.005 https://doi.org/10.1016/j.ultsonch.2017.01.005
dc.relation.references14. Goel, M., Hongqiang, H., Mujumdar, A.S., Ray, M.B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds - A comparative study. Water Res. 38, 4247-4261. doi.org/10.1016/j.watres.2004.08.008 https://doi.org/10.1016/j.watres.2004.08.008
dc.relation.references15. Znak, Z., Zin, O. Investigation of disposal of liquid wastes from olefin production by sodium hypochlorite solutions. (2017). Chemistry & Chemical Technology. 11 (4), 517-522. https://doi.org/10.23939/chcht11.04.517
dc.relation.referencesen1. Meckenstock, R.U., Boll, M., Mouttaki, H., Koelschbach, P., Weyrauch, P., Dong, X., Himmelberg, A.M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. Biotechnol. 26 92-118. doi: 10.1159/000441358 https://doi.org/10.1159/000441358
dc.relation.referencesen2. Ohio Department of Health, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), (2009). http://www.odh.ohio.gov/∼/media/ODH/ASSETS/Files/eh/HAS/btex.ashx.
dc.relation.referencesen3. Atashgahi, S., Hornung, B., Van Der Waals, M.J., Da Rocha, U.N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A.J.M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8, 1-12. DOI:10.1038/s41598-018-22617-x https://doi.org/10.1038/s41598-018-22617-x
dc.relation.referencesen4. Ming, H. Yu. H., Zhang, H., Li, H., Pan, K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012) . Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys. 137, 113-117. doi.org/10.1016/j.matchemphys.2012.02.076 https://doi.org/10.1016/j.matchemphys.2012.02.076
dc.relation.referencesen5. Braeutigam, P. , Wu, Z.L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol. 32, 745-753. doi.org/10.1002/ceat.200800626 https://doi.org/10.1002/ceat.200800626
dc.relation.referencesen6. Ramteke, L.P. , Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. Eng. Chem. 28, 247-260. https://doi.org/10.1016/j.jiec.2015.02.022
dc.relation.referencesen7. Barik, A.J. , Gogate, P.R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrason. Sonochem. 30, 70-78. doi.org/10.1016/j.ultsonch.2015.11.007 https://doi.org/10.1016/j.ultsonch.2015.11.007
dc.relation.referencesen8. Dhanke, P.B., Wagh, S.M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam. 6, 20-32. doi: 10.1016/j.emcon.2019.12.001. https://doi.org/10.1016/j.emcon.2019.12.001
dc.relation.referencesen9. Innocenzi, V., Prisciandaro, M., Centofanti, M., Veglio, F. (2019). Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced Fenton process for degradation of azo-dyes. J. Environ. Chem. Eng. 7, 103171. doi.org/10.1016/j.jece.2019.103171 https://doi.org/10.1016/j.jece.2019.103171
dc.relation.referencesen10. Thanekar, P., Gogate, P.R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry, 70, 105296. doi.org/10.1016/j.ultsonch.2020.105296 https://doi.org/10.1016/j.ultsonch.2020.105296
dc.relation.referencesen11. Sukhatskiy, Y., Znak, Z., Zin, O., & Chupinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. doi: 10.23939/chcht15.02.284 https://doi.org/10.23939/chcht15.02.284
dc.relation.referencesen12. Rajoriya, S., Carpenter, J., Saharan, V.K., Pandit, A.B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Rev. Chem. Eng. 32, 379-411. doi: 10.1515/revce-015-0075. https://doi.org/10.1515/revce-2015-0075
dc.relation.referencesen13. Rajoriya, S. , Bargole, S., Saharan, V.K. (2017). Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrason. Sonochem. 37, 192-202. doi.org/10.1016/j.ultsonch.2017.01.005 https://doi.org/10.1016/j.ultsonch.2017.01.005
dc.relation.referencesen14. Goel, M., Hongqiang, H., Mujumdar, A.S., Ray, M.B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds - A comparative study. Water Res. 38, 4247-4261. doi.org/10.1016/j.watres.2004.08.008 https://doi.org/10.1016/j.watres.2004.08.008
dc.relation.referencesen15. Znak, Z., Zin, O. Investigation of disposal of liquid wastes from olefin production by sodium hypochlorite solutions. (2017). Chemistry & Chemical Technology. 11 (4), 517-522. https://doi.org/10.23939/chcht11.04.517
dc.relation.urihttps://doi.org/10.1159/000441358
dc.relation.urihttp://www.odh.ohio.gov/
dc.relation.urihttps://doi.org/10.1038/s41598-018-22617-x
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2012.02.076
dc.relation.urihttps://doi.org/10.1002/ceat.200800626
dc.relation.urihttps://doi.org/10.1016/j.jiec.2015.02.022
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2015.11.007
dc.relation.urihttps://doi.org/10.1016/j.emcon.2019.12.001
dc.relation.urihttps://doi.org/10.1016/j.jece.2019.103171
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2020.105296
dc.relation.urihttps://doi.org/10.23939/chcht15.02.284
dc.relation.urihttps://doi.org/10.1515/revce-2015-0075
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2017.01.005
dc.relation.urihttps://doi.org/10.1016/j.watres.2004.08.008
dc.relation.urihttps://doi.org/10.23939/chcht11.04.517
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectбензен
dc.subjectнатрію гіпохлорит
dc.subjectультразвукове випромінювання
dc.subjectкавітація
dc.subjectдеструкція
dc.subjectмінералізація
dc.subjectbenzene
dc.subjectsodium hypochlorite
dc.subjectultrasonic radiation
dc.subjectcavitation
dc.subjectdestruction
dc.subjectmineralization
dc.titleІнтенсифікація окисної деструкції бензену натрію гіпохлоритом під дією ультразвукового випромінювання
dc.title.alternativeIntensification of oxidative destruction of benzene by sodium hypochlorite under the effect of ultrasonic radiation
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Znak_Z_O-Intensification_of_oxidative_22-28.pdf
Size:
801.42 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Znak_Z_O-Intensification_of_oxidative_22-28__COVER.png
Size:
446.97 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: