Інтенсифікація окисної деструкції бензену натрію гіпохлоритом під дією ультразвукового випромінювання
dc.citation.epage | 28 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 22 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Інститут хімічної технології | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute of Chemical Technology, Mumbai | |
dc.contributor.author | Знак, З. О. | |
dc.contributor.author | Гогейт, П. Р. | |
dc.contributor.author | Сухацький, Ю. В. | |
dc.contributor.author | Мних, Р. В. | |
dc.contributor.author | Танекар, П. | |
dc.contributor.author | Znak, Z. O. | |
dc.contributor.author | Gogate, P. R. | |
dc.contributor.author | Sukhatskyi, Yu. V. | |
dc.contributor.author | Mnykh, R. V. | |
dc.contributor.author | Thanekar, P. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:12:29Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено процес взаємодії бензену з натрію гіпохлоритом у модельному середовищі під дією ультразвукового випромінювання різної потужності за дозованого подавання розчину окисника. Перебіг процесу оцінювали за зміною значення окисно-відновного потенціалу середовища в часі. Методом спектрофотометричного аналізу встановлено, що внаслідок взаємодії з натрію гіпохлоритом у кавітаційних полях відбувається практично повна мінералізація бензену. Показано, що окисна деструкція бензену відбувається головно за рахунок продуктів сонолізу води. | |
dc.description.abstract | The process of the interaction of benzene with sodium hypochlorite in a model environment under the action of ultrasonic radiation of different power and under the metered supply of an oxidant solution was investigated. The course of the process was evaluated by the change in the value of the redox potential of the medium over time. By the method of spectrophotometric analysis, it was established that as a result of interaction with sodium hypochlorite in cavitation fields, almost complete mineralization of benzene occurs. It is shown that the oxidative destruction of benzene mainly occurs due to the products of sonolysis of water. | |
dc.format.extent | 22-28 | |
dc.format.pages | 7 | |
dc.identifier.citation | Інтенсифікація окисної деструкції бензену натрію гіпохлоритом під дією ультразвукового випромінювання / З. О. Знак, П. Р. Гогейт, Ю. В. Сухацький, Р. В. Мних, П. Танекар // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 22–28. | |
dc.identifier.citationen | Intensification of oxidative destruction of benzene by sodium hypochlorite under the effect of ultrasonic radiation / Z. O. Znak, P. R. Gogate, Yu. V. Sukhatskyi, R. V. Mnykh, P. Thanekar // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 22–28. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.02.022 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63681 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.references | 1. Meckenstock, R.U., Boll, M., Mouttaki, H., Koelschbach, P., Weyrauch, P., Dong, X., Himmelberg, A.M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. Biotechnol. 26 92-118. doi: 10.1159/000441358 https://doi.org/10.1159/000441358 | |
dc.relation.references | 2. Ohio Department of Health, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), (2009). http://www.odh.ohio.gov/∼/media/ODH/ASSETS/Files/eh/HAS/btex.ashx. | |
dc.relation.references | 3. Atashgahi, S., Hornung, B., Van Der Waals, M.J., Da Rocha, U.N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A.J.M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8, 1-12. DOI:10.1038/s41598-018-22617-x https://doi.org/10.1038/s41598-018-22617-x | |
dc.relation.references | 4. Ming, H. Yu. H., Zhang, H., Li, H., Pan, K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012) . Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys. 137, 113-117. doi.org/10.1016/j.matchemphys.2012.02.076 https://doi.org/10.1016/j.matchemphys.2012.02.076 | |
dc.relation.references | 5. Braeutigam, P. , Wu, Z.L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol. 32, 745-753. doi.org/10.1002/ceat.200800626 https://doi.org/10.1002/ceat.200800626 | |
dc.relation.references | 6. Ramteke, L.P. , Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. Eng. Chem. 28, 247-260. https://doi.org/10.1016/j.jiec.2015.02.022 | |
dc.relation.references | 7. Barik, A.J. , Gogate, P.R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrason. Sonochem. 30, 70-78. doi.org/10.1016/j.ultsonch.2015.11.007 https://doi.org/10.1016/j.ultsonch.2015.11.007 | |
dc.relation.references | 8. Dhanke, P.B., Wagh, S.M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam. 6, 20-32. doi: 10.1016/j.emcon.2019.12.001. https://doi.org/10.1016/j.emcon.2019.12.001 | |
dc.relation.references | 9. Innocenzi, V., Prisciandaro, M., Centofanti, M., Veglio, F. (2019). Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced Fenton process for degradation of azo-dyes. J. Environ. Chem. Eng. 7, 103171. doi.org/10.1016/j.jece.2019.103171 https://doi.org/10.1016/j.jece.2019.103171 | |
dc.relation.references | 10. Thanekar, P., Gogate, P.R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry, 70, 105296. doi.org/10.1016/j.ultsonch.2020.105296 https://doi.org/10.1016/j.ultsonch.2020.105296 | |
dc.relation.references | 11. Sukhatskiy, Y., Znak, Z., Zin, O., & Chupinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. doi: 10.23939/chcht15.02.284 https://doi.org/10.23939/chcht15.02.284 | |
dc.relation.references | 12. Rajoriya, S., Carpenter, J., Saharan, V.K., Pandit, A.B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Rev. Chem. Eng. 32, 379-411. doi: 10.1515/revce-015-0075. https://doi.org/10.1515/revce-2015-0075 | |
dc.relation.references | 13. Rajoriya, S. , Bargole, S., Saharan, V.K. (2017). Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrason. Sonochem. 37, 192-202. doi.org/10.1016/j.ultsonch.2017.01.005 https://doi.org/10.1016/j.ultsonch.2017.01.005 | |
dc.relation.references | 14. Goel, M., Hongqiang, H., Mujumdar, A.S., Ray, M.B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds - A comparative study. Water Res. 38, 4247-4261. doi.org/10.1016/j.watres.2004.08.008 https://doi.org/10.1016/j.watres.2004.08.008 | |
dc.relation.references | 15. Znak, Z., Zin, O. Investigation of disposal of liquid wastes from olefin production by sodium hypochlorite solutions. (2017). Chemistry & Chemical Technology. 11 (4), 517-522. https://doi.org/10.23939/chcht11.04.517 | |
dc.relation.referencesen | 1. Meckenstock, R.U., Boll, M., Mouttaki, H., Koelschbach, P., Weyrauch, P., Dong, X., Himmelberg, A.M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. Biotechnol. 26 92-118. doi: 10.1159/000441358 https://doi.org/10.1159/000441358 | |
dc.relation.referencesen | 2. Ohio Department of Health, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), (2009). http://www.odh.ohio.gov/∼/media/ODH/ASSETS/Files/eh/HAS/btex.ashx. | |
dc.relation.referencesen | 3. Atashgahi, S., Hornung, B., Van Der Waals, M.J., Da Rocha, U.N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A.J.M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8, 1-12. DOI:10.1038/s41598-018-22617-x https://doi.org/10.1038/s41598-018-22617-x | |
dc.relation.referencesen | 4. Ming, H. Yu. H., Zhang, H., Li, H., Pan, K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012) . Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys. 137, 113-117. doi.org/10.1016/j.matchemphys.2012.02.076 https://doi.org/10.1016/j.matchemphys.2012.02.076 | |
dc.relation.referencesen | 5. Braeutigam, P. , Wu, Z.L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol. 32, 745-753. doi.org/10.1002/ceat.200800626 https://doi.org/10.1002/ceat.200800626 | |
dc.relation.referencesen | 6. Ramteke, L.P. , Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. Eng. Chem. 28, 247-260. https://doi.org/10.1016/j.jiec.2015.02.022 | |
dc.relation.referencesen | 7. Barik, A.J. , Gogate, P.R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrason. Sonochem. 30, 70-78. doi.org/10.1016/j.ultsonch.2015.11.007 https://doi.org/10.1016/j.ultsonch.2015.11.007 | |
dc.relation.referencesen | 8. Dhanke, P.B., Wagh, S.M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam. 6, 20-32. doi: 10.1016/j.emcon.2019.12.001. https://doi.org/10.1016/j.emcon.2019.12.001 | |
dc.relation.referencesen | 9. Innocenzi, V., Prisciandaro, M., Centofanti, M., Veglio, F. (2019). Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced Fenton process for degradation of azo-dyes. J. Environ. Chem. Eng. 7, 103171. doi.org/10.1016/j.jece.2019.103171 https://doi.org/10.1016/j.jece.2019.103171 | |
dc.relation.referencesen | 10. Thanekar, P., Gogate, P.R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry, 70, 105296. doi.org/10.1016/j.ultsonch.2020.105296 https://doi.org/10.1016/j.ultsonch.2020.105296 | |
dc.relation.referencesen | 11. Sukhatskiy, Y., Znak, Z., Zin, O., & Chupinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. doi: 10.23939/chcht15.02.284 https://doi.org/10.23939/chcht15.02.284 | |
dc.relation.referencesen | 12. Rajoriya, S., Carpenter, J., Saharan, V.K., Pandit, A.B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Rev. Chem. Eng. 32, 379-411. doi: 10.1515/revce-015-0075. https://doi.org/10.1515/revce-2015-0075 | |
dc.relation.referencesen | 13. Rajoriya, S. , Bargole, S., Saharan, V.K. (2017). Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrason. Sonochem. 37, 192-202. doi.org/10.1016/j.ultsonch.2017.01.005 https://doi.org/10.1016/j.ultsonch.2017.01.005 | |
dc.relation.referencesen | 14. Goel, M., Hongqiang, H., Mujumdar, A.S., Ray, M.B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds - A comparative study. Water Res. 38, 4247-4261. doi.org/10.1016/j.watres.2004.08.008 https://doi.org/10.1016/j.watres.2004.08.008 | |
dc.relation.referencesen | 15. Znak, Z., Zin, O. Investigation of disposal of liquid wastes from olefin production by sodium hypochlorite solutions. (2017). Chemistry & Chemical Technology. 11 (4), 517-522. https://doi.org/10.23939/chcht11.04.517 | |
dc.relation.uri | https://doi.org/10.1159/000441358 | |
dc.relation.uri | http://www.odh.ohio.gov/ | |
dc.relation.uri | https://doi.org/10.1038/s41598-018-22617-x | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2012.02.076 | |
dc.relation.uri | https://doi.org/10.1002/ceat.200800626 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2015.02.022 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2015.11.007 | |
dc.relation.uri | https://doi.org/10.1016/j.emcon.2019.12.001 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2019.103171 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2020.105296 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.284 | |
dc.relation.uri | https://doi.org/10.1515/revce-2015-0075 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2017.01.005 | |
dc.relation.uri | https://doi.org/10.1016/j.watres.2004.08.008 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.04.517 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | бензен | |
dc.subject | натрію гіпохлорит | |
dc.subject | ультразвукове випромінювання | |
dc.subject | кавітація | |
dc.subject | деструкція | |
dc.subject | мінералізація | |
dc.subject | benzene | |
dc.subject | sodium hypochlorite | |
dc.subject | ultrasonic radiation | |
dc.subject | cavitation | |
dc.subject | destruction | |
dc.subject | mineralization | |
dc.title | Інтенсифікація окисної деструкції бензену натрію гіпохлоритом під дією ультразвукового випромінювання | |
dc.title.alternative | Intensification of oxidative destruction of benzene by sodium hypochlorite under the effect of ultrasonic radiation | |
dc.type | Article |
Files
License bundle
1 - 1 of 1