Radiant heating and cooling system efficiency of office premise based on TABS
dc.citation.epage | 123 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Теорія і практика будівництва | |
dc.citation.spage | 116 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Савченко, О. О. | |
dc.contributor.author | Матусевич, В. К. | |
dc.contributor.author | Savchenko, Olena | |
dc.contributor.author | Matusevych, Vadym | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T06:11:51Z | |
dc.date.created | 2024-02-24 | |
dc.date.issued | 2024-02-24 | |
dc.description.abstract | Централізовані системи тепло- і холодопостачання є ключовим рішенням щодо декарбонізації енергетичного сектору через високий потенціал інтеграції відновлюваних джерел енергії. Проте низький температурний потенціал відновлюваних джерел енергії зумовлює відповідні діапазони робочих температур теплоносіїв у системах опалення та охолодження. За наявності низькотемпературних теплоносіїв доцільно використовувати системи променевого опалення та охолодження, які забезпечують тепловий комфорт у приміщенні та зменшують споживання енергетичних ресурсів. У статті визначено питому потужність стельової ТАБС із вмонтованими трубами розмірами 20×2,0 мм, що розташовані в середині бетонного перекриття завтовшки 270 мм. Крок укладання трубопроводів змінювався та становив 10, 15, 20, 25 та 30 см. Визначення питомої теплової потужності променевої системи опалення виконано для параметрів теплоносія: tг / tо = 35/31; 36/32; 34/30 оC. Визначення питомої холодильної потужності променевої системи охолодження здійснено для параметрів теплоносія: tх / tн = 15/18; 16/19; 16/20 оC. Результати аналітичних досліджень показують, що система променистого опалення на основі стельового ТАБС дає змогу забезпечити необхідну теплову потужність для повного покриття тепловтрат приміщення, а максимальні значення температури теплоносія становлять tг / tо = 34/30 оC. У теплий період року стельова ТАБС не дає змоги забезпечити необхідну холодильну потужність приміщення. Найбільша холодильна потужність ТАБС спостерігається за параметрів холодоносія tх / tн = 15/18 оC, що дає змогу покрити близько 70 % розрахункових теплонадходжень приміщення. Тому в години пікових теплонадходжень у теплий період року у приміщенні необхідно використовувати додатковий охолоджувальний прилад. | |
dc.description.abstract | In this article the specific heating and cooling capacity of the ceiling TABS was determined. The step of tube laying varied and was 10, 15, 20, 25, and 30 cm. Determination of the specific heating capacity was carried out for th /tc = 35/31; 36/32; 34/30 oC. The determination of the specific cooling capacity was carried out for tcold /theated = 15/18; 16/19; 16/20oC. The radiant heating system based on ceiling TABS allows providing the necessary heating capacity to fully cover the heat loss of the room. The maximum values of the carrier temperature are th /tc = 34/30 oC. In the warm period, the ceiling TABS does not allow to provide the necessary cooling capacity of the room. Thus, the greatest cooling capacity of TABS is observed at coolant parameters tcold /theated = 15/18оC, which allows covering about 70% of the estimated heat gains of the room. Therefore, during the hours of peak heat gains an additional cooling device should be used in the room. | |
dc.format.extent | 116-123 | |
dc.format.pages | 8 | |
dc.identifier.citation | Savchenko O. Radiant heating and cooling system efficiency of office premise based on TABS / Olena Savchenko, Vadym Matusevych // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 116–123. | |
dc.identifier.citationen | Savchenko O. Radiant heating and cooling system efficiency of office premise based on TABS / Olena Savchenko, Vadym Matusevych // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 116–123. | |
dc.identifier.doi | doi.org/10.23939/jtbp2024.01.116 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111469 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Теорія і практика будівництва, 1 (6), 2024 | |
dc.relation.ispartof | Theory and Building Practice, 1 (6), 2024 | |
dc.relation.references | Abugabbara, M. (2023) District heating and cooling systems transition: Evaluation of current challenges and possibilities. Thesis for: Doctor of Philosophy. Available from: https://www.researchgate.net/publication/375602195_District_heating_and_cooling_systems_transition_Evaluation_of_current_challenges_and_future_possibilities [accessed Mar 01 2024]. | |
dc.relation.references | Savchenko, O., Zhelykh, V., Yurkevych, Y., Kozak, K., Bahmet. S. (2018). Alternative energy source for heating system of woodworking enterprise. Energy Engineering and Control Systems, 4(1), 27–30. https://doi.org/10.23939/jeecs2018.01.027 | |
dc.relation.references | Lepiksaar, K., Kalme, K., Siirde, A., Volkova, A. (2021). Heat Pump Use in Rural District Heating Networks in Estonia. Environmental and Climate Technologies, 25(1), 786–802. DOI: 10.2478/rtuect-2021-0059. | |
dc.relation.references | Lis, A., Savchenko, O. (2022) Possibilities of using the energy potential of geothermal waters in the case of Poland and Ukraine. Construction of Optimized Energy Potential, 11, 181–194/ DOI: 10.17512/bozpe.2022.11.21 | |
dc.relation.references | Pakere, I., Gravelsins, A., Lauka, D., Blumberga, D. (2021). Will there be the waste heat and boiler house competition in Latvia? Assessment of industrial waste heat. Smart Energy, 3, 100023. DOI: 10.1016/j.segy.2021.100023. | |
dc.relation.references | Yurkevych, Y., Savchenko, O., Savchenko, Z. (2022). Prospects for development of geothermal energy in Lviv region. Energy Engineering and Control Systems, 8(1), 1–6. https://doi.org/10.23939/jeecs2022.01.001 | |
dc.relation.references | Savchenko, O., Yurkevych, Y., Voznyak, O., Savchenko, Z. (2023). Assessment of the possibility of transferring Ukrainian district heating systems to low-temperature coolants. Theory and Building Practice, 5(1), 28-36. https://doi.org/10.23939/jtbp2023.01.028. | |
dc.relation.references | Kazanci, O. B., Shinoda, J., Olesen, B. W. (2022). Revisiting radiant cooling systems from a resiliency perspective: A preliminary study. REHVA 14th HVAC World Congress, Rotterdam, Netherland, DOI: 10.34641/clima.2022.241. | |
dc.relation.references | Babiak, J., Vagiannis, G. (2015) Thermally Activated Building System (TABS): Efficient cooling of commercial buildings, Climamed, Juan-Les-Pins, France Available from: https://www.researchgate.net/publication/281968993_Thermally_Activated_Building_System_TABS_Efficient_cooling_and_heating_of_commercial_buildings [accessed Mar 01 2024]. | |
dc.relation.references | Stojanovi, B. V., Janevski, J. N., Mitkovi, P. B., Stojanovi, M. B., Ignjatovi, M. G. (2014). Thermally activated building systems in context of increasing building energy efficiency. Thermal science, 18 (3), 1011–1018. DOI: 10.2298/TSCI1403011S. | |
dc.relation.references | Seo, R., Choi, Ji-Su, Kim, C., Rhee, K.-N. (2023). Feasibility study of simplified pipe modeling for analyzing thermal performances of radiant heating and cooling systems, E3S Web of Conferences, 396(9). DOI: 10.1051/e3sconf/202339603016. | |
dc.relation.references | Gallardo, A., Berardi, U. (2021). Development and evaluation of a control strategy for water-based radiant systems with integrated phase change materials, 17th IBPSA Conference, Bruges, Belgium. https://doi.org/10.26868/25222708.2021.30724 . | |
dc.relation.references | Shindo, K., Shinoda, J., Kazanci, O. B., Bogatu, D.-I., Tanabe, S.-I., Olesen, B. W. (2023). Resiliency comparison of radiant cooling systems and all-air systems. Available from: https://www.researchgate.net/publication/371636684_Resiliency_comparison_of_radiant_cooling_systems_and_all_air_systems [accessed Mar 04 2024]. | |
dc.relation.references | Dudkiewicz, E., Voznyak, O., Spodyniuk N. (2023). The application of the analytical hierarchy process approach to the selection of a gas radiant heating system for an industrial building. Energy and automation, 4, 16-30. http://dx.doi.org/10.31548/energiya4(68).2023.016 (in Ukrainian). | |
dc.relation.references | Fialko, N. M., Zhelykh, V. M., Dzeryn, O. I. (2013). Modeling of thermal regime of manufacturing premises using graph theory and Building Practice, 756, 47–50. Available from: https://science.lpnu.ua/sites/default/files/journal-paper/2017/jun/4426/9-fialko-47-50.pdf [accessed Mar 01 2024]. | |
dc.relation.references | Savchenko, O., Dzeryn, O., Lis, A. (2023). Features of heat exchange in office premises with radiant cooling, Construction of Optimized Energy Potential, 12, 191–200. DOI: 10.17512/bozpe.2023.12.21. | |
dc.relation.references | Chandrashekar, R., Kumar, B. (2023). Experimental investigation of thermally activated building system under the two different floor covering materials to maximize the underfloor cooling efficiency. International Journal of Thermal Sciences, 188, 108223. https://doi.org/10.1016/j.ijthermalsci.2023.108223. | |
dc.relation.references | Jiang, S., Li, X., Lyu, W., Wang, B., Shi, W. (2020). Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline. Journal of Building Engineering, 31, 101435. https://doi.org/10.1016/j.jobe.2020.101435. | |
dc.relation.references | Romani, J.; Cabeza, L. F.; de Gracía, A. (2018). Development and experimental validation of a transient 2D numeric model for radiant walls. Renewable Energy, 115, 859–870. https://doi.org/10.1016/j.renene.2017.08.019 . | |
dc.relation.references | Samuel, D. L., Nagendra, S. S., Maiya, M. P. (2018). Parametric analysis on the thermal comfort of a cooling tower based thermally activated building system in tropical climate – An experimental study. Applied Thermal Engineering, 138, 325–335. https://doi.org/10.1016/j.applthermaleng.2018.04.077. | |
dc.relation.references | Romani, J., Gracia, A. D., Cabeza, L. F. (2016). Simulation and control of thermally activated building systems (TABS). Energy and Buildings, 127, 22–42. https://doi.org/10.1016/j.enbuild.2016.05.057. | |
dc.relation.references | Villar-Ramos, M. M., Hernández-Pérez, I., Aguilar-Castro, K. M., Zavala-Guillén, I., Macias-Melo, E. V., Hernández-López, I. Serrano-Arellano, J. (2022) A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings. Energies, 15, 6179. https://doi.org/10.3390/en15176179 | |
dc.relation.referencesen | Abugabbara, M. (2023) District heating and cooling systems transition: Evaluation of current challenges and possibilities. Thesis for: Doctor of Philosophy. Available from: https://www.researchgate.net/publication/375602195_District_heating_and_cooling_systems_transition_Evaluation_of_current_challenges_and_future_possibilities [accessed Mar 01 2024]. | |
dc.relation.referencesen | Savchenko, O., Zhelykh, V., Yurkevych, Y., Kozak, K., Bahmet. S. (2018). Alternative energy source for heating system of woodworking enterprise. Energy Engineering and Control Systems, 4(1), 27–30. https://doi.org/10.23939/jeecs2018.01.027 | |
dc.relation.referencesen | Lepiksaar, K., Kalme, K., Siirde, A., Volkova, A. (2021). Heat Pump Use in Rural District Heating Networks in Estonia. Environmental and Climate Technologies, 25(1), 786–802. DOI: 10.2478/rtuect-2021-0059. | |
dc.relation.referencesen | Lis, A., Savchenko, O. (2022) Possibilities of using the energy potential of geothermal waters in the case of Poland and Ukraine. Construction of Optimized Energy Potential, 11, 181–194/ DOI: 10.17512/bozpe.2022.11.21 | |
dc.relation.referencesen | Pakere, I., Gravelsins, A., Lauka, D., Blumberga, D. (2021). Will there be the waste heat and boiler house competition in Latvia? Assessment of industrial waste heat. Smart Energy, 3, 100023. DOI: 10.1016/j.segy.2021.100023. | |
dc.relation.referencesen | Yurkevych, Y., Savchenko, O., Savchenko, Z. (2022). Prospects for development of geothermal energy in Lviv region. Energy Engineering and Control Systems, 8(1), 1–6. https://doi.org/10.23939/jeecs2022.01.001 | |
dc.relation.referencesen | Savchenko, O., Yurkevych, Y., Voznyak, O., Savchenko, Z. (2023). Assessment of the possibility of transferring Ukrainian district heating systems to low-temperature coolants. Theory and Building Practice, 5(1), 28-36. https://doi.org/10.23939/jtbp2023.01.028. | |
dc.relation.referencesen | Kazanci, O. B., Shinoda, J., Olesen, B. W. (2022). Revisiting radiant cooling systems from a resiliency perspective: A preliminary study. REHVA 14th HVAC World Congress, Rotterdam, Netherland, DOI: 10.34641/clima.2022.241. | |
dc.relation.referencesen | Babiak, J., Vagiannis, G. (2015) Thermally Activated Building System (TABS): Efficient cooling of commercial buildings, Climamed, Juan-Les-Pins, France Available from: https://www.researchgate.net/publication/281968993_Thermally_Activated_Building_System_TABS_Efficient_cooling_and_heating_of_commercial_buildings [accessed Mar 01 2024]. | |
dc.relation.referencesen | Stojanovi, B. V., Janevski, J. N., Mitkovi, P. B., Stojanovi, M. B., Ignjatovi, M. G. (2014). Thermally activated building systems in context of increasing building energy efficiency. Thermal science, 18 (3), 1011–1018. DOI: 10.2298/TSCI1403011S. | |
dc.relation.referencesen | Seo, R., Choi, Ji-Su, Kim, C., Rhee, K.-N. (2023). Feasibility study of simplified pipe modeling for analyzing thermal performances of radiant heating and cooling systems, E3S Web of Conferences, 396(9). DOI: 10.1051/e3sconf/202339603016. | |
dc.relation.referencesen | Gallardo, A., Berardi, U. (2021). Development and evaluation of a control strategy for water-based radiant systems with integrated phase change materials, 17th IBPSA Conference, Bruges, Belgium. https://doi.org/10.26868/25222708.2021.30724 . | |
dc.relation.referencesen | Shindo, K., Shinoda, J., Kazanci, O. B., Bogatu, D.-I., Tanabe, S.-I., Olesen, B. W. (2023). Resiliency comparison of radiant cooling systems and all-air systems. Available from: https://www.researchgate.net/publication/371636684_Resiliency_comparison_of_radiant_cooling_systems_and_all_air_systems [accessed Mar 04 2024]. | |
dc.relation.referencesen | Dudkiewicz, E., Voznyak, O., Spodyniuk N. (2023). The application of the analytical hierarchy process approach to the selection of a gas radiant heating system for an industrial building. Energy and automation, 4, 16-30. http://dx.doi.org/10.31548/energiya4(68).2023.016 (in Ukrainian). | |
dc.relation.referencesen | Fialko, N. M., Zhelykh, V. M., Dzeryn, O. I. (2013). Modeling of thermal regime of manufacturing premises using graph theory and Building Practice, 756, 47–50. Available from: https://science.lpnu.ua/sites/default/files/journal-paper/2017/jun/4426/9-fialko-47-50.pdf [accessed Mar 01 2024]. | |
dc.relation.referencesen | Savchenko, O., Dzeryn, O., Lis, A. (2023). Features of heat exchange in office premises with radiant cooling, Construction of Optimized Energy Potential, 12, 191–200. DOI: 10.17512/bozpe.2023.12.21. | |
dc.relation.referencesen | Chandrashekar, R., Kumar, B. (2023). Experimental investigation of thermally activated building system under the two different floor covering materials to maximize the underfloor cooling efficiency. International Journal of Thermal Sciences, 188, 108223. https://doi.org/10.1016/j.ijthermalsci.2023.108223. | |
dc.relation.referencesen | Jiang, S., Li, X., Lyu, W., Wang, B., Shi, W. (2020). Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline. Journal of Building Engineering, 31, 101435. https://doi.org/10.1016/j.jobe.2020.101435. | |
dc.relation.referencesen | Romani, J.; Cabeza, L. F.; de Gracía, A. (2018). Development and experimental validation of a transient 2D numeric model for radiant walls. Renewable Energy, 115, 859–870. https://doi.org/10.1016/j.renene.2017.08.019 . | |
dc.relation.referencesen | Samuel, D. L., Nagendra, S. S., Maiya, M. P. (2018). Parametric analysis on the thermal comfort of a cooling tower based thermally activated building system in tropical climate – An experimental study. Applied Thermal Engineering, 138, 325–335. https://doi.org/10.1016/j.applthermaleng.2018.04.077. | |
dc.relation.referencesen | Romani, J., Gracia, A. D., Cabeza, L. F. (2016). Simulation and control of thermally activated building systems (TABS). Energy and Buildings, 127, 22–42. https://doi.org/10.1016/j.enbuild.2016.05.057. | |
dc.relation.referencesen | Villar-Ramos, M. M., Hernández-Pérez, I., Aguilar-Castro, K. M., Zavala-Guillén, I., Macias-Melo, E. V., Hernández-López, I. Serrano-Arellano, J. (2022) A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings. Energies, 15, 6179. https://doi.org/10.3390/en15176179 | |
dc.relation.uri | https://www.researchgate.net/publication/375602195_District_heating_and_cooling_systems_transition_Evaluation_of_current_challenges_and_future_possibilities | |
dc.relation.uri | https://doi.org/10.23939/jeecs2018.01.027 | |
dc.relation.uri | https://doi.org/10.23939/jeecs2022.01.001 | |
dc.relation.uri | https://doi.org/10.23939/jtbp2023.01.028 | |
dc.relation.uri | https://www.researchgate.net/publication/281968993_Thermally_Activated_Building_System_TABS_Efficient_cooling_and_heating_of_commercial_buildings | |
dc.relation.uri | https://doi.org/10.26868/25222708.2021.30724 | |
dc.relation.uri | https://www.researchgate.net/publication/371636684_Resiliency_comparison_of_radiant_cooling_systems_and_all_air_systems | |
dc.relation.uri | http://dx.doi.org/10.31548/energiya4(68).2023.016 | |
dc.relation.uri | https://science.lpnu.ua/sites/default/files/journal-paper/2017/jun/4426/9-fialko-47-50.pdf | |
dc.relation.uri | https://doi.org/10.1016/j.ijthermalsci.2023.108223 | |
dc.relation.uri | https://doi.org/10.1016/j.jobe.2020.101435 | |
dc.relation.uri | https://doi.org/10.1016/j.renene.2017.08.019 | |
dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2018.04.077 | |
dc.relation.uri | https://doi.org/10.1016/j.enbuild.2016.05.057 | |
dc.relation.uri | https://doi.org/10.3390/en15176179 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Savchenko O., Matusevych V., 2024 | |
dc.subject | система централізованого опалення та охолодження | |
dc.subject | відновлюване джерело енергії | |
dc.subject | система променевого опалення | |
dc.subject | система променевого охолодження | |
dc.subject | термічно активована будівельна система | |
dc.subject | питома потужність | |
dc.subject | district heating and cooling system | |
dc.subject | renewable energy source | |
dc.subject | radiant heating system | |
dc.subject | radiant cooling system | |
dc.subject | thermally activated building system | |
dc.subject | specific capacity | |
dc.title | Radiant heating and cooling system efficiency of office premise based on TABS | |
dc.title.alternative | Ефективність систем променевого опалення та охолодження офісного приміщення на основі ТАБС | |
dc.type | Article |
Files
License bundle
1 - 1 of 1