Синтез баркероподібних послідовностей з адаптацією до величини завади
dc.citation.epage | 98 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Український журнал інформаційних технологій | |
dc.citation.spage | 91 | |
dc.citation.volume | 3 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Національна академія сухопутних військ імені гетьмана Петра Сагайдачного | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Hetman Petro Sahaidachnyi National Army Academy | |
dc.contributor.author | Цмоць, І. Г. | |
dc.contributor.author | Різник, О. Я. | |
dc.contributor.author | Бударецький, Ю. І. | |
dc.contributor.author | Олійник, М. Я. | |
dc.contributor.author | Tsmots, I. H. | |
dc.contributor.author | Riznyk, O. Ya. | |
dc.contributor.author | Budaretskyi, Yu. I. | |
dc.contributor.author | Oliinyk, M. Ya. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-03-23T10:27:01Z | |
dc.date.available | 2023-03-23T10:27:01Z | |
dc.date.created | 2021-10-10 | |
dc.date.issued | 2021-10-10 | |
dc.description.abstract | Вдосконалено метод синтезу завадостійких баркероподібних кодових послідовностей із використанням ідеальних кільцевих в’язанок. Удосконалено метод для швидкого знаходження таких шумоподібних завадостійких кодових послідовностей, які здатні в найбільшому обсязі знаходити і виправляти помилки відповідно до довжини отриманої кодової послідовності. Реалізовано алгоритм для швидкого знаходження таких завадостійких баркероподібних кодових послідовностей, які здатні знаходити і виправляти найбільше помилок відповідно до довжини одержаної кодової послідовності. Розроблено імітаційну модель завадостійкого баркероподібного кодування із використанням ідеальних кільцевих в’язанок. Досліджено можливість зменшення надлишковості завадостійких кодових послідовностей за допомогою обрізання кодових послідовностей на певну кількість бітів без втрати відновлювальної здатності завадостійких кодів. Виконано теоретичний аналіз можливостей цього підходу та його ефективності. Виконано декілька серій експериментальних досліджень надійності роботи описаного методу на різних вибірках даних та підтверджено його функціональну ефективність. Проаналізовано отримані дані та виявлено ключові фактори, що впливають на результат. Здійснено практичну програмну реалізацію імітаційної моделі завадостійкого баркероподібного кодування щодо знаходження та виправлення помилок в отриманих завадостійких баркероподібних кодових послідовностях. Описано використані методи та алгоритми оброблення даних, основні компоненти для оброблення повідомлень та їх призначення. Досліджено можливість зменшення надлишковості завадостійких кодових послідовностей за допомогою скорочення кодових послідовностей на певну кількість бітів без втрати відновлювальної здатності завадостійких кодів. Виконано теоретичний аналіз можливостей цього підходу та його ефективності. Проведено декілька серій експериментальних досліджень надійності роботи описаного методу на різних вибірках даних та підтверджено його функціональну ефективність. Виконано аналіз отриманих результатів та визначено основні фактори, що впливають на результат. Запропоновані завадостійкі баркероподібні кодові послідовності мають практичну цінність, оскільки за допомогою отриманої баркероподібної кодової послідовності можна доволі просто та швидко знаходити до 50 % та виправляти до 25 % спотворених символів від довжини завадостійкої баркероподібної кодової послідовності. | |
dc.description.abstract | The method of synthesis of noise-resistant barker-like code sequences with the use of ideal ring bundles has been improved. The method for fast finding of such noise-like noise-resistant code sequences, which are able to find and correct errors in accordance with the length of the obtained code sequence, has been improved. An algorithm is implemented to quickly find such noise-resistant barker-like code sequences that are able to find and correct errors in accordance with the length of the obtained code sequence. A simulation model of noise-tolerant barker-like coding with the use of ideal ring bundles has been developed. The possibility of reducing the redundancy of noise-tolerant code sequences by cutting code sequences by a certain number of bits without losing the regenerative capacity of noise-tolerant codes has been investigated. Theoretical analysis of the possibilities of this approach and its effectiveness is performed. Several series of experimental studies of the reliability of the described method on different data samples were performed and its functional efficiency was confirmed. The analysis of the obtained data and identification of key factors influencing the result is carried out. The practical software implementation of the simulation model of noise-tolerant barker-like coding for finding and correcting errors in the obtained noise-tolerant barker-like code sequences is carried out. The used methods and algorithms of data processing, the main components for message processing and their purpose are described. The possibility of reducing the redundancy of noise-tolerant code sequences by reducing the code sequences by a certain number of bits without losing the reproducibility of noise-tolerant codes has been investigated. Theoretical analysis of the possibilities of this approach and its effectiveness is performed. Several series of experimental studies of the reliability of the described method on different data samples were performed and its functional efficiency was confirmed. The analysis of the obtained results is performed and the main factors influencing the obtained result are determined. The proposed noise-tolerant barker-like code sequences have practical value, because with the help of the obtained barker-like code sequence it is quite simple and fast to find up to 50 % and correct up to 25 % of distorted characters from the length of noise-tolerant barker-like code sequence. | |
dc.format.extent | 91-98 | |
dc.format.pages | 8 | |
dc.identifier.citation | Синтез баркероподібних послідовностей з адаптацією до величини завади / І. Г. Цмоць, О. Я. Різник, Ю. І. Бударецький, М. Я. Олійник // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2021. — Том 3. — № 1. — С. 91–98. | |
dc.identifier.citationen | Tsmots I. H., Riznyk O. Ya., Budaretskyi Yu. I., Oliinyk M. Ya. (2021) Syntez barkeropodibnykh poslidovnostei z adaptatsiieiu do velychyny zavady [Synthesis of barker-like sequences with adaptation to the size of the interference]. Ukrainian Journal of Information Technology (Lviv), vol. 3, no 1, pp. 91-98 [in Ukrainian]. | |
dc.identifier.doi | https://doi.org/10.23939/ujit2021.03.091 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57766 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал інформаційних технологій, 1 (3), 2021 | |
dc.relation.ispartof | Ukrainian Journal of Information Technology, 1 (3), 2021 | |
dc.relation.references | [1] Aljalai, A. M. N., Feng, C., Leung, V. C. M., & Ward, R. (2020). Improving the Energy Efficiency of DFT-s-OFDM in Uplink Massive MIMO with Barker Codes. 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 731–735. https://doi.org/10.1109/ICNC47757.2020.9049829 | |
dc.relation.references | [2] Kellman, M., Rivest, F., Pechacek, A., Sohn, L., & Lustig, M. (2017). Barker-Coded node-pore resistive pulse sensing with built-in coincidence correction. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 1053–1057. https://doi.org/10.1109/ICASSP.2017.7952317 | |
dc.relation.references | [3] Lakshmi, C. R., Trivikramarao, D., Subhani, S., & Ghali, V. S. (2018). Barker coded thermal wave imaging for anomaly detection. 2018 Conference on Signal Processing and Communication Engineering Systems (SPACES), Vijayawada, India, 198–201. https://doi.org/10.1109/SPACES.2018.8316345 | |
dc.relation.references | [4] Matsuyuki, S., & Tsuneda, A. (2018). A Study on Aperiodic Auto-Correlation Properties of Concatenated Codes by Barker Sequences and NFSR Sequences. 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 664–666. https://doi.org/10.1109/ICTC.2018.8539367 | |
dc.relation.references | [5] Omar, S. M., Kassem, F., Mitri, R., Hijazi, H., & Saleh, M. (2015). A novel barker code algorithm for resolving range ambiguity in high PRF radars. 2015 European Radar Conference (EuRAD), Paris, 81–84. https://doi.org/10.1109/EuRAD.2015.7346242 | |
dc.relation.references | [6] Pilsu, Kim, Eunji, Jung, Sua, Bae, Kangsik, Kim, & Taikyong, Song (2016). Barker-sequence-modulated golay coded excitation technique for ultrasound imaging. 2016 IEEE International Ultrasonics Symposium (IUS), Tours, 1–4. https://doi.org/10.1109/ULTSYM.2016.7728737 | |
dc.relation.references | [7] Riznyk, O., Povshuk, O., Kynash, Y. & Yurchak, I. (2017). Composing method of anti-interference codes based on nonequidistant structures. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, 15–17. https://doi.org/10.1109/MEMSTECH.2017.7937522 | |
dc.relation.references | [8] Riznyk, O., Povshuk, O., Kynash, Y., Nazarkevich, M., & Yurchak, I. (2018). Synthesis of non-equidistant location of sensors in sensor network. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, 204–208. https://doi.org/10.1109/MEMSTECH.2018.8365734 | |
dc.relation.references | [9] Riznyk, O., Povshuk, O., Noga, Y., & Kynash, Y. (2018). Transformation of Information Based on Noisy Codes. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, 162–165. https://doi.org/10.1109/DSMP.2018.8478509 | |
dc.relation.references | [10] Rodriguez-Garcia, P., Ledford, G., Baylis, C., & Marks, R. J. (2019). Real-Time Synthesis Approach for Simultaneous Radar and Spatially Secure Communications from a Common Phased Array. 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 1–4. https://doi.org/10.1109/RWS.2019.8714503 | |
dc.relation.references | [11] Rosli1, S. J., Rahim, H., Ngadiran, R., Abdul Rani, K. N., Ahmad, M. I., & Wee, F. H. (2018). Design of Binary Coded Pulse Trains with Good Autocorrelation Properties for Radar Communications. 2018 MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201815006016 | |
dc.relation.references | [12] Tsmots, I., Rabyk, V., Riznyk, O., & Kynash, Y. (2019). Method of Synthesis and Practical Realization of QuasiBarker Codes. 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 76–79. https://doi.org/10.1109/STCCSIT.2019.8929882 | |
dc.relation.references | [13] Tsmots, I., Riznyk, O., Rabyk, V., Kynash, Y., Kustra, N., & Logoida, M. (2020). Implementation of FPGA-Based Barkers-Like Codes. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. sion Making. ISDMCI 2019. Advances in Intelligent Systems and Computing, Vol. 1020, pp. 203–214. Springer, Cham. https://doi.org/10.1007/978-3-030-26474-1_15 | |
dc.relation.references | [14] Vienneau, E., & Byram, B. (2020). Compound BarkerCoded Excitation for Increased Signal-to-Noise Ratio and Penetration Depth in Transcranial Ultrasound Imaging. 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 1–4. https://doi.org/10.1109/IUS46767.2020.9251650 | |
dc.relation.references | [15] Wang, M., Cong, S., & Zhang, S. (2018). Pseudo Chirp-Barker-Golay coded excitation in ultrasound imaging. 2018 Chinese Control And Decision Conference (CCDC), Shenyang, 4035–4039. https://doi.org/10.1109/CCDC.2018.8407824 | |
dc.relation.references | [16] Wang, S., & He, P. (2018). Research on Low Intercepting Radar Waveform Based on LFM and Barker Code Composite Modulation. 2018 International Conference on Sensor Networks and Signal Processing (SNSP), Xian, China, 297–301. https://doi.org/10.1109/SNSP.2018.00064 | |
dc.relation.referencesen | [1] Aljalai, A. M. N., Feng, C., Leung, V. C. M., & Ward, R. (2020). Improving the Energy Efficiency of DFT-s-OFDM in Uplink Massive MIMO with Barker Codes. 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 731–735. https://doi.org/10.1109/ICNC47757.2020.9049829 | |
dc.relation.referencesen | [2] Kellman, M., Rivest, F., Pechacek, A., Sohn, L., & Lustig, M. (2017). Barker-Coded node-pore resistive pulse sensing with built-in coincidence correction. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 1053–1057. https://doi.org/10.1109/ICASSP.2017.7952317 | |
dc.relation.referencesen | [3] Lakshmi, C. R., Trivikramarao, D., Subhani, S., & Ghali, V. S. (2018). Barker coded thermal wave imaging for anomaly detection. 2018 Conference on Signal Processing and Communication Engineering Systems (SPACES), Vijayawada, India, 198–201. https://doi.org/10.1109/SPACES.2018.8316345 | |
dc.relation.referencesen | [4] Matsuyuki, S., & Tsuneda, A. (2018). A Study on Aperiodic Auto-Correlation Properties of Concatenated Codes by Barker Sequences and NFSR Sequences. 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 664–666. https://doi.org/10.1109/ICTC.2018.8539367 | |
dc.relation.referencesen | [5] Omar, S. M., Kassem, F., Mitri, R., Hijazi, H., & Saleh, M. (2015). A novel barker code algorithm for resolving range ambiguity in high PRF radars. 2015 European Radar Conference (EuRAD), Paris, 81–84. https://doi.org/10.1109/EuRAD.2015.7346242 | |
dc.relation.referencesen | [6] Pilsu, Kim, Eunji, Jung, Sua, Bae, Kangsik, Kim, & Taikyong, Song (2016). Barker-sequence-modulated golay coded excitation technique for ultrasound imaging. 2016 IEEE International Ultrasonics Symposium (IUS), Tours, 1–4. https://doi.org/10.1109/ULTSYM.2016.7728737 | |
dc.relation.referencesen | [7] Riznyk, O., Povshuk, O., Kynash, Y. & Yurchak, I. (2017). Composing method of anti-interference codes based on nonequidistant structures. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, 15–17. https://doi.org/10.1109/MEMSTECH.2017.7937522 | |
dc.relation.referencesen | [8] Riznyk, O., Povshuk, O., Kynash, Y., Nazarkevich, M., & Yurchak, I. (2018). Synthesis of non-equidistant location of sensors in sensor network. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, 204–208. https://doi.org/10.1109/MEMSTECH.2018.8365734 | |
dc.relation.referencesen | [9] Riznyk, O., Povshuk, O., Noga, Y., & Kynash, Y. (2018). Transformation of Information Based on Noisy Codes. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, 162–165. https://doi.org/10.1109/DSMP.2018.8478509 | |
dc.relation.referencesen | [10] Rodriguez-Garcia, P., Ledford, G., Baylis, C., & Marks, R. J. (2019). Real-Time Synthesis Approach for Simultaneous Radar and Spatially Secure Communications from a Common Phased Array. 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 1–4. https://doi.org/10.1109/RWS.2019.8714503 | |
dc.relation.referencesen | [11] Rosli1, S. J., Rahim, H., Ngadiran, R., Abdul Rani, K. N., Ahmad, M. I., & Wee, F. H. (2018). Design of Binary Coded Pulse Trains with Good Autocorrelation Properties for Radar Communications. 2018 MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201815006016 | |
dc.relation.referencesen | [12] Tsmots, I., Rabyk, V., Riznyk, O., & Kynash, Y. (2019). Method of Synthesis and Practical Realization of QuasiBarker Codes. 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 76–79. https://doi.org/10.1109/STCCSIT.2019.8929882 | |
dc.relation.referencesen | [13] Tsmots, I., Riznyk, O., Rabyk, V., Kynash, Y., Kustra, N., & Logoida, M. (2020). Implementation of FPGA-Based Barkers-Like Codes. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. sion Making. ISDMCI 2019. Advances in Intelligent Systems and Computing, Vol. 1020, pp. 203–214. Springer, Cham. https://doi.org/10.1007/978-3-030-26474-1_15 | |
dc.relation.referencesen | [14] Vienneau, E., & Byram, B. (2020). Compound BarkerCoded Excitation for Increased Signal-to-Noise Ratio and Penetration Depth in Transcranial Ultrasound Imaging. 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 1–4. https://doi.org/10.1109/IUS46767.2020.9251650 | |
dc.relation.referencesen | [15] Wang, M., Cong, S., & Zhang, S. (2018). Pseudo Chirp-Barker-Golay coded excitation in ultrasound imaging. 2018 Chinese Control And Decision Conference (CCDC), Shenyang, 4035–4039. https://doi.org/10.1109/CCDC.2018.8407824 | |
dc.relation.referencesen | [16] Wang, S., & He, P. (2018). Research on Low Intercepting Radar Waveform Based on LFM and Barker Code Composite Modulation. 2018 International Conference on Sensor Networks and Signal Processing (SNSP), Xian, China, 297–301. https://doi.org/10.1109/SNSP.2018.00064 | |
dc.relation.uri | https://doi.org/10.1109/ICNC47757.2020.9049829 | |
dc.relation.uri | https://doi.org/10.1109/ICASSP.2017.7952317 | |
dc.relation.uri | https://doi.org/10.1109/SPACES.2018.8316345 | |
dc.relation.uri | https://doi.org/10.1109/ICTC.2018.8539367 | |
dc.relation.uri | https://doi.org/10.1109/EuRAD.2015.7346242 | |
dc.relation.uri | https://doi.org/10.1109/ULTSYM.2016.7728737 | |
dc.relation.uri | https://doi.org/10.1109/MEMSTECH.2017.7937522 | |
dc.relation.uri | https://doi.org/10.1109/MEMSTECH.2018.8365734 | |
dc.relation.uri | https://doi.org/10.1109/DSMP.2018.8478509 | |
dc.relation.uri | https://doi.org/10.1109/RWS.2019.8714503 | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201815006016 | |
dc.relation.uri | https://doi.org/10.1109/STCCSIT.2019.8929882 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-26474-1_15 | |
dc.relation.uri | https://doi.org/10.1109/IUS46767.2020.9251650 | |
dc.relation.uri | https://doi.org/10.1109/CCDC.2018.8407824 | |
dc.relation.uri | https://doi.org/10.1109/SNSP.2018.00064 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.subject | баркероподібна послідовність | |
dc.subject | завадостійка послідовність | |
dc.subject | дзеркальна кодова послідовність | |
dc.subject | ідеальна кільцева в’язанка | |
dc.subject | нееквідистантна кодова послідовність | |
dc.subject | нееквідистантна комбінаторна конфігурація | |
dc.subject | barker-like sequence | |
dc.subject | ideal ring bundle | |
dc.subject | noise-tolerant sequence | |
dc.subject | non-equidistant code sequence | |
dc.subject | non-equidistant combinatorial configuration | |
dc.subject | mirror code sequence | |
dc.subject.udc | 004 | |
dc.subject.udc | 621.396 | |
dc.title | Синтез баркероподібних послідовностей з адаптацією до величини завади | |
dc.title.alternative | Synthesis of barker-like sequences with adaptation to the size of the interference | |
dc.type | Article |