Термодинамічні параметри розчину 2-метил-5-феніл-1-(-4-метилфеніл)-пірол-3-карбонової кислоти у спиртах
| dc.citation.epage | 6 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Львівський національний університет ім. Івана Франка | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Ivan Franko National University of Lviv | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Костюк, Р. Р. | |
| dc.contributor.author | Горак, Ю. І. | |
| dc.contributor.author | Собечко, І. Б. | |
| dc.contributor.author | Kostiuk, R. R. | |
| dc.contributor.author | Horak, Yu. I. | |
| dc.contributor.author | Sobechko, I. B. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-15T13:53:21Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | За температурною залежністю розчинності 2-метил-5-феніл-1-(-4-метилфеніл)- пірол-3-карбонової кислоти в бутан-1-олі, бутан-2-олі, пропан-1-олі, пропан-2-олі розраховано значення ентальпії та ентропії їх розчинення. Встановлено характер взаємодії розчиненої речовини та гідроксильних розчинників. Наведено температурні залежності розчинності 2-метил-5-феніл-1-(-4-метилфеніл)-пірол-3-карбонової кислоти в спиртах. З урахуванням ентальпії та ентропії плавлення, перерахованої до 298,15 К, обчислено ентальпії та ентропії змішування. | |
| dc.description.abstract | Based on the temperature dependence of the solubility of 2-methyl-5-phenyl-1-(-4-methylphenyl)- pyrrole-3-carboxylic acid in 1-butanol, 2-butanol, 1-propanol, and 2-propanol, the enthalpy and entropy of their dissolution were calculated. Taking into account the enthalpy and entropy of melting recalculated to 298.15 K, the enthalpies and entropies of mixing were calculated. | |
| dc.format.extent | 1-6 | |
| dc.format.pages | 6 | |
| dc.identifier.citation | Костюк Р. Р. Термодинамічні параметри розчину 2-метил-5-феніл-1-(-4-метилфеніл)-пірол-3-карбонової кислоти у спиртах / Р. Р. Костюк, Ю. І. Горак, І. Б. Собечко // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2024. — Том 7. — № 2. — С. 1–6. | |
| dc.identifier.citation2015 | Костюк Р. Р., Собечко І. Б. Термодинамічні параметри розчину 2-метил-5-феніл-1-(-4-метилфеніл)-пірол-3-карбонової кислоти у спиртах // Chemistry, Technology and Application of Substances, Львів. 2024. Том 7. № 2. С. 1–6. | |
| dc.identifier.citationenAPA | Kostiuk, R. R., Horak, Yu. I., & Sobechko, I. B. (2024). Termodynamichni parametry rozchynu 2-metyl-5-fenil-1-(-4-metylfenil)-pirol-3-karbonovoi kysloty u spyrtakh [Thermodynamic parameters of a solution of 2-methyl-5-phenyl-1-(-4-methylphenyl)-pyrrole-3-carboxylic acid in alcohols]. Chemistry, Technology and Application of Substances, 7(2), 1-6. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Kostiuk R. R., Horak Yu. I., Sobechko I. B. (2024) Termodynamichni parametry rozchynu 2-metyl-5-fenil-1-(-4-metylfenil)-pirol-3-karbonovoi kysloty u spyrtakh [Thermodynamic parameters of a solution of 2-methyl-5-phenyl-1-(-4-methylphenyl)-pyrrole-3-carboxylic acid in alcohols]. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 1-6 [in Ukrainian]. | |
| dc.identifier.doi | https://doi.org/10.23939/ctas2024.02.001 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124436 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (7), 2024 | |
| dc.relation.references | 1. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. Journal of Physical Chemistry B, 114(8), 2846–2851. https://doi.org/10.1021/jp911323c | |
| dc.relation.references | 2. Santos, A. F. L. O.M., &Ribeiro da Silva,M. A. V. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. Journal of Physical Chemistry A, 117(24), 5195–5204. https://doi.org/10.1021/jp4032628 | |
| dc.relation.references | 3. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di-, tri-, tetra-, and pentamethyl- substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1–7. https://doi.org/10.1016/j.jct.2014.04.003 | |
| dc.relation.references | 4. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2010). Calorimetric and computational study of the thermochemistry of halogenated 1- phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441–1450. https://doi.org/10.1016/j.jct.2010.06.012 | |
| dc.relation.references | 5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854 | |
| dc.relation.references | 6. Du, C. (2022). The solubility of ethyl candesartan in mono solvents and investigation of intermolecular interactions. Liquids, 2(4), 404–412. https://doi.org/10.3390/liquids2040023 | |
| dc.relation.references | 7. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., & Li, Q. (2022). Solubility measurement, modeling, and solvent effect of m-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798 | |
| dc.relation.references | 8. Maharana, A., & Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33–54. https://doi.org/10.1016/j.fluid.2019.06.004 | |
| dc.relation.references | 9. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J., & Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven mono-solvents. Journal of Molecular Liquids, 333,115894. https://doi.org/10.1016/j.molliq.2021.115894 | |
| dc.relation.references | 10. Wu, Y., Zhang, X., Di, Y., & Zhang, Y.(2017). Solubility determination and modelling of 4- nitro-1,2-phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 106, 22–35. https://doi.org/10.1016/j.jct.2016.11.014 | |
| dc.relation.references | 11. Li, X., Wang, M., Du, C., Cong, Y., & Zhao, H. (2017). Thermodynamic functions for solubility of 3- nitro-o-toluic acid in nine organic solvents from T =(283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87–98.https://doi.org/10.1016/j.jct.2017.02.017 | |
| dc.relation.references | 12. Собечко, І. Б. (2021). Термодинамічні властивості оксигено- та нітрогеновмісних гетероцикліч- них сполук та їх розчинів: дис…. д-ра хім. наук.Львів. 525 с. | |
| dc.relation.references | 13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., & Goshko, L.(2019). Thermodynamic properties of methyl 4-(4- methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in organic solutions. French- Ukrainian Journal of Chemistry, 7(2), 1–8. https://doi.org/10.17721/fujcv7i2p1-8 | |
| dc.relation.referencesen | 1. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. Journal of Physical Chemistry B, 114(8), 2846–2851. https://doi.org/10.1021/jp911323c | |
| dc.relation.referencesen | 2. Santos, A. F. L. O.M., &Ribeiro da Silva,M. A. V. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. Journal of Physical Chemistry A, 117(24), 5195–5204. https://doi.org/10.1021/jp4032628 | |
| dc.relation.referencesen | 3. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di-, tri-, tetra-, and pentamethyl- substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1–7. https://doi.org/10.1016/j.jct.2014.04.003 | |
| dc.relation.referencesen | 4. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2010). Calorimetric and computational study of the thermochemistry of halogenated 1- phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441–1450. https://doi.org/10.1016/j.jct.2010.06.012 | |
| dc.relation.referencesen | 5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854 | |
| dc.relation.referencesen | 6. Du, C. (2022). The solubility of ethyl candesartan in mono solvents and investigation of intermolecular interactions. Liquids, 2(4), 404–412. https://doi.org/10.3390/liquids2040023 | |
| dc.relation.referencesen | 7. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., & Li, Q. (2022). Solubility measurement, modeling, and solvent effect of m-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798 | |
| dc.relation.referencesen | 8. Maharana, A., & Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33–54. https://doi.org/10.1016/j.fluid.2019.06.004 | |
| dc.relation.referencesen | 9. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J., & Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven mono-solvents. Journal of Molecular Liquids, 333,115894. https://doi.org/10.1016/j.molliq.2021.115894 | |
| dc.relation.referencesen | 10. Wu, Y., Zhang, X., Di, Y., & Zhang, Y.(2017). Solubility determination and modelling of 4- nitro-1,2-phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 106, 22–35. https://doi.org/10.1016/j.jct.2016.11.014 | |
| dc.relation.referencesen | 11. Li, X., Wang, M., Du, C., Cong, Y., & Zhao, H. (2017). Thermodynamic functions for solubility of 3- nitro-o-toluic acid in nine organic solvents from T =(283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87–98.https://doi.org/10.1016/j.jct.2017.02.017 | |
| dc.relation.referencesen | 12. Sobechko, I. B. (2021). Termodynamichni vlastyvosti oksyheno- ta nitrohenovmisnykh heterotsyklich- nykh spoluk ta yikh rozchyniv: dys…. d-ra khim. nauk.Lviv. 525 p. | |
| dc.relation.referencesen | 13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., & Goshko, L.(2019). Thermodynamic properties of methyl 4-(4- methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in organic solutions. French- Ukrainian Journal of Chemistry, 7(2), 1–8. https://doi.org/10.17721/fujcv7i2p1-8 | |
| dc.relation.uri | https://doi.org/10.1021/jp911323c | |
| dc.relation.uri | https://doi.org/10.1021/jp4032628 | |
| dc.relation.uri | https://doi.org/10.1016/j.jct.2014.04.003 | |
| dc.relation.uri | https://doi.org/10.1016/j.jct.2010.06.012 | |
| dc.relation.uri | https://doi.org/10.3390/ijms23168854 | |
| dc.relation.uri | https://doi.org/10.3390/liquids2040023 | |
| dc.relation.uri | https://doi.org/10.1016/j.molliq.2022.118798 | |
| dc.relation.uri | https://doi.org/10.1016/j.fluid.2019.06.004 | |
| dc.relation.uri | https://doi.org/10.1016/j.molliq.2021.115894 | |
| dc.relation.uri | https://doi.org/10.1016/j.jct.2016.11.014 | |
| dc.relation.uri | https://doi.org/10.1016/j.jct.2017.02.017 | |
| dc.relation.uri | https://doi.org/10.17721/fujcv7i2p1-8 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | розчинність | |
| dc.subject | ентальпія розчинення | |
| dc.subject | ентальпія змішування | |
| dc.subject | ентальпія плавлення | |
| dc.subject | 2-метил-5-феніл-1-(-4-метилфеніл)-пірол-3-карбонова кислота | |
| dc.subject | бутан-2-ол | |
| dc.subject | бутан-1-ол | |
| dc.subject | пропан-1-ол | |
| dc.subject | пропан-2-ол | |
| dc.subject | solubility | |
| dc.subject | enthalpy of dissolution | |
| dc.subject | enthalpy of mixing | |
| dc.subject | enthalpy of melting | |
| dc.subject | 2-methyl-5-phenyl-1-(-4-methylphenyl)-pyrrole-3-carboxylic acid | |
| dc.subject | 1-butanol | |
| dc.subject | 2-butanol | |
| dc.subject | 1-propanol | |
| dc.subject | 2-propanol | |
| dc.title | Термодинамічні параметри розчину 2-метил-5-феніл-1-(-4-метилфеніл)-пірол-3-карбонової кислоти у спиртах | |
| dc.title.alternative | Thermodynamic parameters of a solution of 2-methyl-5-phenyl-1-(-4-methylphenyl)-pyrrole-3-carboxylic acid in alcohols | |
| dc.type | Article |