Оцінка сорбційної ємності мінеральних сорбентів щодо Fe(III) методами багатомірного кластерного аналізу
dc.citation.epage | 150 | |
dc.citation.issue | 2 | |
dc.citation.spage | 145 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Сабадаш, В. В. | |
dc.contributor.author | Гумницький, Я. М. | |
dc.contributor.author | Sabadash, V. V. | |
dc.contributor.author | Gumnitsky, Ya. M. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:47:11Z | |
dc.date.available | 2024-01-22T08:47:11Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Кластеризовано результати дослідження адсорбційної здатності низки сорбентів природного та синтетичного походження щодо іонів заліза. Досліджено сорбційну ємність таких сорбентів: природний цеоліт Сокирницьного родовища, синтетичний сорбент на основі золи виносу Добротвірської ДРЕС, Al2O3, SiO2, а також деяких типів ґрунтів: супіщаний ґрунт, чорнозем та глина. Одержано рівняння, що описують закономірності процесів адсорбції залежно від типу сорбента. Згідно з одержаними дендрограмами процесу адсорбції виділено два основні кластери сорбентів. Розраховано статистичні параметри процесу і значущість одержаних результатів. Коефіцієнт детермінації дослідних даних становив 0,87–0,99, стандартне відхилення становило 0,017–0,026. | |
dc.description.abstract | The results of the study of the adsorption capacity of a number of sorbents of natural and synthetic origin with respect to iron ions have been clustered. The sorption capacity of the following sorbents was studied: natural zeolite of the Sokyrnytsia deposit, synthetic sorbent based on the ash of Doborotvir heat power plant, Al2O3, SiO2, as well as some types of soils: sandy soil, black soil and clay. Equations describing the regularities of adsorption processes depending on the type of sorbent are obtained. According to the obtained dendrograms of the adsorption process, two main clusters of sorbents were identified. The statistical parameters of the process and the significance of the obtained results are calculated. The coefficient of determination of experimental data was 0.87– 0.99, the standard deviation was 0.017–0.026. | |
dc.format.extent | 145-150 | |
dc.format.pages | 6 | |
dc.identifier.citation | Сабадаш В. В. Оцінка сорбційної ємності мінеральних сорбентів щодо Fe(III) методами багатомірного кластерного аналізу / В. В. Сабадаш, Я. М. Гумницький // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Том 4. — № 2. — С. 145–150. | |
dc.identifier.citationen | Sabadash V. V. Investigation of the process of Fe (III) adsorption by methods of multidimensional cluster analysis / V. V. Sabadash, Ya. M. Gumnitsky // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 145–150. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.02.145 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60889 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (4), 2021 | |
dc.relation.references | 1. Lin S., Man Y. B., Chow K. L., Zheng C., Wong M. H. (2020). Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 50(2), 105–134. | |
dc.relation.references | 2. Deng H., Wei R., Luo W., Hu L., Li B., Shi H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658. | |
dc.relation.references | 3. Ramesh, V., George, J. (2020). Carbon and Nutrient Sequestration Potential of Coal-Based Fly Ash Zeolites. In Circular Economy and Fly Ash Management (pp. 47–55). Springer, Singapore. | |
dc.relation.references | 4. Coignet P. A., Kratzer D. W., Kulkarni S. S., Sanders Jr. E. S. (2020). U.S. Patent No. 10,525,400. Washington, DC: U.S. Patent and Trademark Office. | |
dc.relation.references | 5. Zeng X., Xu Y., Zhang B., Luo G., Sun P., Zou R., Yao H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503–512. | |
dc.relation.references | 6. Akpomie K. G., Onyeabor C. F., Ezeofor C. C., Ani J. U., Eze S. I. (2019). Natural aluminosilicate clay obtained from South-Eastern Nigeria as potential sorbent for oil spill remediation. Journal of African Earth Sciences, 155, 118–123. | |
dc.relation.references | 7. Zagklis D. P., Paraskeva C. A. (2020). Preliminary design of a phenols purification plant. Journal of Chemical Technology & Biotechnology, 95(2), 373–383. | |
dc.relation.references | 8. Sabadash V., Gumnitsky J., Hyvlyud A. (2016) Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. Chemistry & Chemical Technology; 10.2: 235–240. | |
dc.relation.references | 9. Kalvachev Y., Zgureva D., Boycheva S., Barbov B., Petrova N. (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124(1), 101–106. | |
dc.relation.references | 10. Lazarova K., Boycheva S., Vasileva M., Zgureva D., Georgieva B., Babeva T. (2019, March). Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. In Journal of Physics: Conference Series (Vol. 1186, No. 1, p. 012024). IOP Publishing. | |
dc.relation.references | 11. Karanac M., Đolić M., Veličković Z., Kapidžić A., Ivanovski V., Mitrić M., Marinković A. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of environmental management, 224, 263–276. | |
dc.relation.references | 12. Rentsenorov, U., Davaabal, B., & Temuujin, J. (2018). Synthesis of Zeolite A from Mongolian Coal Fly Ash by Hydrothermal Treatment. In Solid State Phenomena Vol. 271, pp. 1–8). Trans Tech Publications Ltd. | |
dc.relation.references | 13. Lee Y. R., Soe J. T., Zhang S., Ahn J. W., Park M. B., Ahn W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821–843. | |
dc.relation.referencesen | 1. Lin S., Man Y. B., Chow K. L., Zheng C., Wong M. H. (2020). Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 50(2), 105–134. | |
dc.relation.referencesen | 2. Deng H., Wei R., Luo W., Hu L., Li B., Shi H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658. | |
dc.relation.referencesen | 3. Ramesh, V., George, J. (2020). Carbon and Nutrient Sequestration Potential of Coal-Based Fly Ash Zeolites. In Circular Economy and Fly Ash Management (pp. 47–55). Springer, Singapore. | |
dc.relation.referencesen | 4. Coignet P. A., Kratzer D. W., Kulkarni S. S., Sanders Jr. E. S. (2020). U.S. Patent No. 10,525,400. Washington, DC: U.S. Patent and Trademark Office. | |
dc.relation.referencesen | 5. Zeng X., Xu Y., Zhang B., Luo G., Sun P., Zou R., Yao H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503–512. | |
dc.relation.referencesen | 6. Akpomie K. G., Onyeabor C. F., Ezeofor C. C., Ani J. U., Eze S. I. (2019). Natural aluminosilicate clay obtained from South-Eastern Nigeria as potential sorbent for oil spill remediation. Journal of African Earth Sciences, 155, 118–123. | |
dc.relation.referencesen | 7. Zagklis D. P., Paraskeva C. A. (2020). Preliminary design of a phenols purification plant. Journal of Chemical Technology & Biotechnology, 95(2), 373–383. | |
dc.relation.referencesen | 8. Sabadash V., Gumnitsky J., Hyvlyud A. (2016) Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. Chemistry & Chemical Technology; 10.2: 235–240. | |
dc.relation.referencesen | 9. Kalvachev Y., Zgureva D., Boycheva S., Barbov B., Petrova N. (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124(1), 101–106. | |
dc.relation.referencesen | 10. Lazarova K., Boycheva S., Vasileva M., Zgureva D., Georgieva B., Babeva T. (2019, March). Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. In Journal of Physics: Conference Series (Vol. 1186, No. 1, p. 012024). IOP Publishing. | |
dc.relation.referencesen | 11. Karanac M., Đolić M., Veličković Z., Kapidžić A., Ivanovski V., Mitrić M., Marinković A. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of environmental management, 224, 263–276. | |
dc.relation.referencesen | 12. Rentsenorov, U., Davaabal, B., & Temuujin, J. (2018). Synthesis of Zeolite A from Mongolian Coal Fly Ash by Hydrothermal Treatment. In Solid State Phenomena Vol. 271, pp. 1–8). Trans Tech Publications Ltd. | |
dc.relation.referencesen | 13. Lee Y. R., Soe J. T., Zhang S., Ahn J. W., Park M. B., Ahn W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821–843. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | адсорбція | |
dc.subject | іони заліза (ІІІ) | |
dc.subject | сорбенти | |
dc.subject | стічні води | |
dc.subject | кластерний аналіз | |
dc.subject | adsorption | |
dc.subject | iron (III) ions | |
dc.subject | sorbents | |
dc.subject | wastewater | |
dc.subject | cluster analysis | |
dc.title | Оцінка сорбційної ємності мінеральних сорбентів щодо Fe(III) методами багатомірного кластерного аналізу | |
dc.title.alternative | Investigation of the process of Fe (III) adsorption by methods of multidimensional cluster analysis | |
dc.type | Article |
Files
License bundle
1 - 1 of 1