Оцінка сорбційної ємності мінеральних сорбентів щодо Fe(III) методами багатомірного кластерного аналізу

dc.citation.epage150
dc.citation.issue2
dc.citation.spage145
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСабадаш, В. В.
dc.contributor.authorГумницький, Я. М.
dc.contributor.authorSabadash, V. V.
dc.contributor.authorGumnitsky, Ya. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:11Z
dc.date.available2024-01-22T08:47:11Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractКластеризовано результати дослідження адсорбційної здатності низки сорбентів природного та синтетичного походження щодо іонів заліза. Досліджено сорбційну ємність таких сорбентів: природний цеоліт Сокирницьного родовища, синтетичний сорбент на основі золи виносу Добротвірської ДРЕС, Al2O3, SiO2, а також деяких типів ґрунтів: супіщаний ґрунт, чорнозем та глина. Одержано рівняння, що описують закономірності процесів адсорбції залежно від типу сорбента. Згідно з одержаними дендрограмами процесу адсорбції виділено два основні кластери сорбентів. Розраховано статистичні параметри процесу і значущість одержаних результатів. Коефіцієнт детермінації дослідних даних становив 0,87–0,99, стандартне відхилення становило 0,017–0,026.
dc.description.abstractThe results of the study of the adsorption capacity of a number of sorbents of natural and synthetic origin with respect to iron ions have been clustered. The sorption capacity of the following sorbents was studied: natural zeolite of the Sokyrnytsia deposit, synthetic sorbent based on the ash of Doborotvir heat power plant, Al2O3, SiO2, as well as some types of soils: sandy soil, black soil and clay. Equations describing the regularities of adsorption processes depending on the type of sorbent are obtained. According to the obtained dendrograms of the adsorption process, two main clusters of sorbents were identified. The statistical parameters of the process and the significance of the obtained results are calculated. The coefficient of determination of experimental data was 0.87– 0.99, the standard deviation was 0.017–0.026.
dc.format.extent145-150
dc.format.pages6
dc.identifier.citationСабадаш В. В. Оцінка сорбційної ємності мінеральних сорбентів щодо Fe(III) методами багатомірного кластерного аналізу / В. В. Сабадаш, Я. М. Гумницький // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Том 4. — № 2. — С. 145–150.
dc.identifier.citationenSabadash V. V. Investigation of the process of Fe (III) adsorption by methods of multidimensional cluster analysis / V. V. Sabadash, Ya. M. Gumnitsky // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 145–150.
dc.identifier.doidoi.org/10.23939/ctas2021.02.145
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60889
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. Lin S., Man Y. B., Chow K. L., Zheng C., Wong M. H. (2020). Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 50(2), 105–134.
dc.relation.references2. Deng H., Wei R., Luo W., Hu L., Li B., Shi H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658.
dc.relation.references3. Ramesh, V., George, J. (2020). Carbon and Nutrient Sequestration Potential of Coal-Based Fly Ash Zeolites. In Circular Economy and Fly Ash Management (pp. 47–55). Springer, Singapore.
dc.relation.references4. Coignet P. A., Kratzer D. W., Kulkarni S. S., Sanders Jr. E. S. (2020). U.S. Patent No. 10,525,400. Washington, DC: U.S. Patent and Trademark Office.
dc.relation.references5. Zeng X., Xu Y., Zhang B., Luo G., Sun P., Zou R., Yao H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503–512.
dc.relation.references6. Akpomie K. G., Onyeabor C. F., Ezeofor C. C., Ani J. U., Eze S. I. (2019). Natural aluminosilicate clay obtained from South-Eastern Nigeria as potential sorbent for oil spill remediation. Journal of African Earth Sciences, 155, 118–123.
dc.relation.references7. Zagklis D. P., Paraskeva C. A. (2020). Preliminary design of a phenols purification plant. Journal of Chemical Technology & Biotechnology, 95(2), 373–383.
dc.relation.references8. Sabadash V., Gumnitsky J., Hyvlyud A. (2016) Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. Chemistry & Chemical Technology; 10.2: 235–240.
dc.relation.references9. Kalvachev Y., Zgureva D., Boycheva S., Barbov B., Petrova N. (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124(1), 101–106.
dc.relation.references10. Lazarova K., Boycheva S., Vasileva M., Zgureva D., Georgieva B., Babeva T. (2019, March). Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. In Journal of Physics: Conference Series (Vol. 1186, No. 1, p. 012024). IOP Publishing.
dc.relation.references11. Karanac M., Đolić M., Veličković Z., Kapidžić A., Ivanovski V., Mitrić M., Marinković A. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of environmental management, 224, 263–276.
dc.relation.references12. Rentsenorov, U., Davaabal, B., & Temuujin, J. (2018). Synthesis of Zeolite A from Mongolian Coal Fly Ash by Hydrothermal Treatment. In Solid State Phenomena Vol. 271, pp. 1–8). Trans Tech Publications Ltd.
dc.relation.references13. Lee Y. R., Soe J. T., Zhang S., Ahn J. W., Park M. B., Ahn W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821–843.
dc.relation.referencesen1. Lin S., Man Y. B., Chow K. L., Zheng C., Wong M. H. (2020). Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 50(2), 105–134.
dc.relation.referencesen2. Deng H., Wei R., Luo W., Hu L., Li B., Shi H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658.
dc.relation.referencesen3. Ramesh, V., George, J. (2020). Carbon and Nutrient Sequestration Potential of Coal-Based Fly Ash Zeolites. In Circular Economy and Fly Ash Management (pp. 47–55). Springer, Singapore.
dc.relation.referencesen4. Coignet P. A., Kratzer D. W., Kulkarni S. S., Sanders Jr. E. S. (2020). U.S. Patent No. 10,525,400. Washington, DC: U.S. Patent and Trademark Office.
dc.relation.referencesen5. Zeng X., Xu Y., Zhang B., Luo G., Sun P., Zou R., Yao H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503–512.
dc.relation.referencesen6. Akpomie K. G., Onyeabor C. F., Ezeofor C. C., Ani J. U., Eze S. I. (2019). Natural aluminosilicate clay obtained from South-Eastern Nigeria as potential sorbent for oil spill remediation. Journal of African Earth Sciences, 155, 118–123.
dc.relation.referencesen7. Zagklis D. P., Paraskeva C. A. (2020). Preliminary design of a phenols purification plant. Journal of Chemical Technology & Biotechnology, 95(2), 373–383.
dc.relation.referencesen8. Sabadash V., Gumnitsky J., Hyvlyud A. (2016) Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. Chemistry & Chemical Technology; 10.2: 235–240.
dc.relation.referencesen9. Kalvachev Y., Zgureva D., Boycheva S., Barbov B., Petrova N. (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124(1), 101–106.
dc.relation.referencesen10. Lazarova K., Boycheva S., Vasileva M., Zgureva D., Georgieva B., Babeva T. (2019, March). Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. In Journal of Physics: Conference Series (Vol. 1186, No. 1, p. 012024). IOP Publishing.
dc.relation.referencesen11. Karanac M., Đolić M., Veličković Z., Kapidžić A., Ivanovski V., Mitrić M., Marinković A. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of environmental management, 224, 263–276.
dc.relation.referencesen12. Rentsenorov, U., Davaabal, B., & Temuujin, J. (2018). Synthesis of Zeolite A from Mongolian Coal Fly Ash by Hydrothermal Treatment. In Solid State Phenomena Vol. 271, pp. 1–8). Trans Tech Publications Ltd.
dc.relation.referencesen13. Lee Y. R., Soe J. T., Zhang S., Ahn J. W., Park M. B., Ahn W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821–843.
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectадсорбція
dc.subjectіони заліза (ІІІ)
dc.subjectсорбенти
dc.subjectстічні води
dc.subjectкластерний аналіз
dc.subjectadsorption
dc.subjectiron (III) ions
dc.subjectsorbents
dc.subjectwastewater
dc.subjectcluster analysis
dc.titleОцінка сорбційної ємності мінеральних сорбентів щодо Fe(III) методами багатомірного кластерного аналізу
dc.title.alternativeInvestigation of the process of Fe (III) adsorption by methods of multidimensional cluster analysis
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n2_Sabadash_V_V-Investigation_of_the_145-150.pdf
Size:
659.3 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n2_Sabadash_V_V-Investigation_of_the_145-150__COVER.png
Size:
479.97 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: