Dendroindication of petroleum soil contamination

dc.citation.epage101
dc.citation.issue2
dc.citation.spage93
dc.contributor.affiliationIvano-Frankivsk National Technical University of Oil and Gas
dc.contributor.authorPoberezhna, Liubov
dc.contributor.authorKaravanovych, Khrystyna
dc.contributor.authorKrekhovetska, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-02T07:05:28Z
dc.date.available2023-05-02T07:05:28Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractThe main approaches to the detection of soil contamination by petroleum products using bioindication were analyzed. Necrosis of leaves of woody plants near sludge accumulators was recorded. To assess the possibility of dendroindication of soil contamination, 3 species of trees distributed on the territory of Bytkiv-Babchensky oil and gas field were selected. According to the results of the FisherSnedekor test, the influence of the concentration of oil products in the soil on the necrosis of tree leaves was confirmed, which confirms the possibility of using a dentroindication to detect soil contamination with oil products.
dc.format.extent93-101
dc.format.pages9
dc.identifier.citationPoberezhna L. Dendroindication of petroleum soil contamination / Liubov Poberezhna, Khrystyna Karavanovych, Iryna Krekhovetska // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 2. — P. 93–101.
dc.identifier.citationenPoberezhna L. Dendroindication of petroleum soil contamination / Liubov Poberezhna, Khrystyna Karavanovych, Iryna Krekhovetska // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 2. — P. 93–101.
dc.identifier.doidoi.org/10.23939/ep2021.02.093
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58981
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (6), 2021
dc.relation.referencesBalliana, A. G., Moura, B. B., Inckot, R. C., & Bona, C. (2017).
dc.relation.referencesDevelopment of Canavalia ensiformis in soil contaminated
dc.relation.referenceswith diesel oil. Environmental Science and Pollution
dc.relation.referencesResearch, 24(1), 979–986.
dc.relation.referencesBaltrėnaitė, E., Baltrėnas, P., & Lietuvninkas, A. (2016). The
dc.relation.referencesRole of Trees in Ecotechnologies. In The Sustainable Role
dc.relation.referencesof the Tree in Environmental Protection Technologies
dc.relation.references(pp. 149–184). Springer, Cham.
dc.relation.referencesDe Fraiture, C., Giordano, M., & Liao, Y. (2008). Biofuels and
dc.relation.referencesimplications for agricultural water use: blue impacts of
dc.relation.referencesgreen energy. Water policy, 10(S1), 67–81.
dc.relation.referencesFyk, M., Biletskyi, V., & Abbud, M. (2018). Resource
dc.relation.referencesevaluation of geothermal power plant under the conditions
dc.relation.referencesof carboniferous deposits usage in the Dnipro-Donetsk
dc.relation.referencesdepression. In E3S Web of Conferences (Vol. 60, p. 00006).
dc.relation.referencesEDP Sciences.
dc.relation.referencesGlibovytska, N. I., & Karavanovych, K. B. (2018). Tree plants
dc.relation.referencesuse for ecological evaluation and renovation of oil-polluted
dc.relation.referencesenvironment. The development of nature sciences: problems
dc.relation.referencesand solutions, 43.
dc.relation.referencesKharlamova, G., Nate, S., & Chernyak, O. (2016). Renewable
dc.relation.referencesenergy and security for Ukraine: challenge or smart
dc.relation.referencesway?. Journal of International Studies, 9(1).
dc.relation.referencesKnapp, K., & Jester, T. (2001). Empirical investigation of the
dc.relation.referencesenergy payback time for photovoltaic modules. Solar
dc.relation.referencesEnergy, 71(3), 165-172.
dc.relation.referencesKurbatova, T., & Khlyap, H. (2015). State and economic
dc.relation.referencesprospects of developing potential of non-renewable and
dc.relation.referencesrenewable energy resources in Ukraine. Renewable and
dc.relation.referencesSustainable Energy Reviews, 52, 217–226.
dc.relation.referencesMandryk, O. M., Pukish, A. V., & Mykhailiuk, Y. D. (2015).
dc.relation.referencesAn assessment of the influence of the main oil industry
dc.relation.referencestechnological processes on the environment. AGH Drilling,
dc.relation.referencesOil, Gas, 32.
dc.relation.referencesOlusola, S. A., & Anslem, E. E. (2010). Bioremediation of a
dc.relation.referencescrude oil polluted soil with Pleurotus pulmonarius and
dc.relation.referencesGlomus mosseae using Amaranthus hybridus as a test
dc.relation.referencesplant. J. Bioremed Biodegr, 1: 113.
dc.relation.referencesPetrescu, R. V., Aversa, R., Apicella, A., Berto, F., Li, S., &
dc.relation.referencesPetrescu, F. I. (2016). Ecosphere protection through green
dc.relation.referencesenergy. American Journal of Applied Sciences, 13(10), 1027–1032.
dc.relation.referencesUdochukwu, U., Igweze, A., Udinyiwe, O. C., & Ijeoma, P. N.
dc.relation.references(2014). Effect of crude oil pollution on orange (citrus)
dc.relation.referencesleaves. International Journal of Current Microbiology and
dc.relation.referencesApplied Sciences, 3(10), 58–64.
dc.relation.referencesYankiv-Vitkovska, L., Peresunko, B., Wyczałek, I., & Papis, J.
dc.relation.references(2020). Site selection for solar power plant in Zaporizhia
dc.relation.referencescity (Ukraine). Geodesy and Cartography, 97–116.
dc.relation.referencesenBalliana, A. G., Moura, B. B., Inckot, R. C., & Bona, C. (2017).
dc.relation.referencesenDevelopment of Canavalia ensiformis in soil contaminated
dc.relation.referencesenwith diesel oil. Environmental Science and Pollution
dc.relation.referencesenResearch, 24(1), 979–986.
dc.relation.referencesenBaltrėnaitė, E., Baltrėnas, P., & Lietuvninkas, A. (2016). The
dc.relation.referencesenRole of Trees in Ecotechnologies. In The Sustainable Role
dc.relation.referencesenof the Tree in Environmental Protection Technologies
dc.relation.referencesen(pp. 149–184). Springer, Cham.
dc.relation.referencesenDe Fraiture, C., Giordano, M., & Liao, Y. (2008). Biofuels and
dc.relation.referencesenimplications for agricultural water use: blue impacts of
dc.relation.referencesengreen energy. Water policy, 10(S1), 67–81.
dc.relation.referencesenFyk, M., Biletskyi, V., & Abbud, M. (2018). Resource
dc.relation.referencesenevaluation of geothermal power plant under the conditions
dc.relation.referencesenof carboniferous deposits usage in the Dnipro-Donetsk
dc.relation.referencesendepression. In E3S Web of Conferences (Vol. 60, p. 00006).
dc.relation.referencesenEDP Sciences.
dc.relation.referencesenGlibovytska, N. I., & Karavanovych, K. B. (2018). Tree plants
dc.relation.referencesenuse for ecological evaluation and renovation of oil-polluted
dc.relation.referencesenenvironment. The development of nature sciences: problems
dc.relation.referencesenand solutions, 43.
dc.relation.referencesenKharlamova, G., Nate, S., & Chernyak, O. (2016). Renewable
dc.relation.referencesenenergy and security for Ukraine: challenge or smart
dc.relation.referencesenway?. Journal of International Studies, 9(1).
dc.relation.referencesenKnapp, K., & Jester, T. (2001). Empirical investigation of the
dc.relation.referencesenenergy payback time for photovoltaic modules. Solar
dc.relation.referencesenEnergy, 71(3), 165-172.
dc.relation.referencesenKurbatova, T., & Khlyap, H. (2015). State and economic
dc.relation.referencesenprospects of developing potential of non-renewable and
dc.relation.referencesenrenewable energy resources in Ukraine. Renewable and
dc.relation.referencesenSustainable Energy Reviews, 52, 217–226.
dc.relation.referencesenMandryk, O. M., Pukish, A. V., & Mykhailiuk, Y. D. (2015).
dc.relation.referencesenAn assessment of the influence of the main oil industry
dc.relation.referencesentechnological processes on the environment. AGH Drilling,
dc.relation.referencesenOil, Gas, 32.
dc.relation.referencesenOlusola, S. A., & Anslem, E. E. (2010). Bioremediation of a
dc.relation.referencesencrude oil polluted soil with Pleurotus pulmonarius and
dc.relation.referencesenGlomus mosseae using Amaranthus hybridus as a test
dc.relation.referencesenplant. J. Bioremed Biodegr, 1: 113.
dc.relation.referencesenPetrescu, R. V., Aversa, R., Apicella, A., Berto, F., Li, S., &
dc.relation.referencesenPetrescu, F. I. (2016). Ecosphere protection through green
dc.relation.referencesenenergy. American Journal of Applied Sciences, 13(10), 1027–1032.
dc.relation.referencesenUdochukwu, U., Igweze, A., Udinyiwe, O. C., & Ijeoma, P. N.
dc.relation.referencesen(2014). Effect of crude oil pollution on orange (citrus)
dc.relation.referencesenleaves. International Journal of Current Microbiology and
dc.relation.referencesenApplied Sciences, 3(10), 58–64.
dc.relation.referencesenYankiv-Vitkovska, L., Peresunko, B., Wyczałek, I., & Papis, J.
dc.relation.referencesen(2020). Site selection for solar power plant in Zaporizhia
dc.relation.referencesencity (Ukraine). Geodesy and Cartography, 97–116.
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Poberezhna L., Karavanovych K., Krekhovetska I., 2021
dc.subjectsludge storage
dc.subjectdendroindication
dc.subjectleaf necrosis and chlorosis
dc.subjectoil pollution of soils
dc.titleDendroindication of petroleum soil contamination
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v6n2_Poberezhna_L-Dendroindication_of_petroleum_93-101.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v6n2_Poberezhna_L-Dendroindication_of_petroleum_93-101__COVER.png
Size:
422.7 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: