Про зменшення громіздкості математичної моделі лінійного параметричного кола
Loading...
Files
Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Abstract
Досліджено вплив вибору змінних диференціального рівняння, що описує лінійне
параметричне коло у часовій області, на зменшення громіздкості такого рівняння.
Запропоновано правила формування системи лінійних диференціальних рівнянь кола,
що забезпечують її прийнятну громіздкість. In this paper are investigated the influence of variables the differential equation describing the linear periodically time-variable circuits in the time domain on decrease of bulkiness such equation. Rules of forming a system of linear differential equations of circuit
that provide its acceptable bulkiness are proposed. Communication of voltages and currents
on elements of an electric circuit looks like algebraic, differential and integral equations. As
showed computer experiments, on the bulkiness of system of the equations, that describe in particular LPTV circuit and its further transformation in time domain, essentially influences presence of integrated expressions in this system. Since the input and output variables are usually given you must to choose such method of formation of system of equations, which would provide absence in it integral expressions. The first rule of formation of the system of equations of circuit is as follows: to provide absence the integral expressions in the system of equations describing a circle in the time domain, as variables in it need to choose the voltage on the capacitor and current in the inductor. One of the perspective methods of forming of equations is the tabular method. By the tabular method in system of equations as variables are
selected nodal voltages, currents and voltages on the elements of the circuit, and the equations
themselves may be formulated so that the integral expressions were absent. It follows the
second rule of formation of system of differential equations which is as follows: in the absence
of other requirements, mathematical model of circuit in the time domain advisable to form by
the tabular method that provides absence the integral expressions in equations without
additional action to remove them. In addition, the tabular method does not impose restrictions
on the structure and elements of circuit. Under condition of performance of the presented two
rules the system of the equations describing a circuit less bulky than without it. Normally in
such systems variables which do not interest the researcher further are eliminated, and the equation in which there are only two variables is formed. Bulkiness of the last equation too can be different, and it depends on what variables left in it. The third rule of forming a differential equation that describes a circle in the time domain and that provides acceptable bulkiness is as follows: despite the fact which variables of circuit is an output variables, in a mathematical model of circuit that was formed by a rule 2, we eliminate all variables, except what correspond to an input signal and a parametric element. If sources of input signal or parametric elements in the circuit a few then such equations necessary to form few - one for
each pair of “input - parametric element.” The differential equation that formed by the three
rules using method L.A. Zadeh is transferred into the frequency domain and is solved by the
frequency symbolic method. As a result we receive symbolic parametric transfer functions
which are a basis for formation of a frequency symbolic model of each parametric element. Such models in turn are a basis for creation of frequency symbolic model of circuit as a whole. Such frequency symbolic model of circuit contains or determines output signals. Values of output signals of circuit may be are converted to the time domain.
Description
Keywords
лінійне параметричне коло, частотний символьний метод, linear periodically time-variable circuits, frequency symbolic method
Citation
Шаповалов Ю.І. Про зменшення громіздкості математичної моделі лінійного параметричного кола / Ю. І. Шаповалов, Б. А. Мандзій, Д. Р. Бачик // Вісник Національного університету "Львівська політехніка". – 2014. – № 796 : Радіоелектроніка та телекомунікації. – С. 3-7. – Бібліографія: 7 назв.