Методи машинного навчання для підвищення енергоефективності будівель

dc.citation.epage209
dc.citation.issue14
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі
dc.citation.spage189
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorВишневський, Олександр
dc.contributor.authorЖуравчак, Любов
dc.contributor.authorVyshnevskyy, Oleksandr
dc.contributor.authorZhuravchak, Liubov
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:21:52Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПрогнозування споживання енергії в будівлі відіграє важливу роль, оскільки воно може допомогти оцінити її енергоефективність, виявити й діагностувати несправності системи енергопостачання, а також зменшити витрати коштів і покращити вплив на клімат. Проаналізовано актуальні дослідження у галузі забезпечення енергоефективності будівель, зокрема, їх енергетичної оцінки з урахуванням типів розглядуваних моделей. Детально розглянуто принципи, переваги, обмеження та практичне застосування основних моделей на основі даних, виділено пріоритетні майбутні напрями прогнозування енергоефективності будівель. Доведено, що ефективність методів є різною для основних типів моделей і залежить від таких факторів: вхідні дані та параметри, тип та якість доступних даних для тренування, придатність методу до конкретного типу моделі тощо. Підкреслено необхідність врахування елемента невизначеності під час прогнозування споживання енергії, оскільки неможливо точно моделювати метеорологічні фактори та поведінку мешканців. Тому для відображення складних нелінійних вхідних та вихідних взаємозв’язків вибрано методи машинного навчання, зокрема, моделі на основі глибокого навчання, оскільки їх продуктивність вища, ніж статистичних методів прогнозування часових рядів. Аналіз опублікованих праць виявив відсутність робіт з описанням цілісної інформаційної системи прогнозування енергії для застосування у комерційних проєктах. Тому актуальним є розроблення автономної інформаційної системи формування стратегії підвищення енергоефективності будівель, яка поєднуватиме сучасні методи машинного навчання. Ми запропонували новий підхід до поєднання технологій семантичного моделювання та машинного навчання для системи управління енергією розумних будівель із використанням системи знань розробленої нами семантичної моделі.
dc.description.abstractPredicting a building’s energy consumption plays an important role as it can help assess its energy efficiency, identify and diagnose energy system faults, and reduce costs and improve climate impact. An analysis of current research in the field of ensuring the energy efficiency of buildings, in particular, their energy assessment, considering the types of models under consideration, was carried out. The principles, advantages, limitations, and practical application of the main data-based models are considered in detail, and priority future directions for forecasting the energy efficiency of buildings are highlighted. It is shown that the effectiveness of the methods is different for the main types of models and depends on the following factors: input data and parameters, the type and quality of available data for training, the suitability of the method for a specific type of model, etc. The need to consider the element of uncertainty when forecasting energy consumption due to the impossibility of accurate modeling of meteorological factors and the behavior of residents is emphasized. Therefore, machine learning methods, particularly deep learning-based models, are chosen to represent complex nonlinear input-output relationships, as they show higher performance than statistical time series forecasting methods. The analysis of published works revealed a lack of works describing a comprehensive energy forecasting information system for use in commercial projects. We proposed a new approach to combining semantic modeling and machine learning technologies for the energy management system of smart buildings, using the knowledge system of the semantic model we developed.
dc.format.extent189-209
dc.format.pages21
dc.identifier.citationВишневський О. Методи машинного навчання для підвищення енергоефективності будівель / Олександр Вишневський, Любов Журавчак // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 14. — С. 189–209.
dc.identifier.citationenVyshnevskyy O. Machine learning methods to increase the energy efficiency of buildings / Oleksandr Vyshnevskyy, Liubov Zhuravchak // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 14. — P. 189–209.
dc.identifier.doidoi.org/10.23939/sisn2023.14.189
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111704
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 14, 2023
dc.relation.ispartofInformation Systems and Networks, 14, 2023
dc.relation.references1. Dandotiya, B. (2020). Climate Change and Its Impact on Terrestrial Ecosystems, Impacts of Climate Change on Agriculture and Aquaculture, 140–157. IGI Global. http://dx.doi.org/10.4018/978-1-7998-3343-7.ch007
dc.relation.references2. Popa A. (2022). A Semantically Data-Driven Classification Framework for Energy Consumption in Buildings. Energies, 2022, 15(9), 3155. https://doi.org/10.3390/en15093155
dc.relation.references3. Runge J. & Zmeureanu R. (2019). Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review. Energies, 2019, 12(17), 3254. https://doi.org/10.3390/en12173254
dc.relation.references4. Amasyali K. & El-Gohary N. M. (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, Vol. 81, Part 1, January 2018, 1192–1205. https://doi.org/10.1016/j.rser.2017.04.095
dc.relation.references5. Sanzana M. R. & Maul T. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, Vol. 141, September 2022, 104445. https://doi.org/10.1016/j.autcon.2022.104445
dc.relation.references6. Khandelwal, I., Adhikari, R. & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Computer Science, 48, 173–179. https://doi.org/10.1016/j.procs.2015.04.167
dc.relation.references7. Markoska E. (2019). A Framework for Automated Real-Time Performance Evaluation of Smart Buildings. https://doi.org/10.21996/5hay-tm27
dc.relation.references8. Wang, Z. & Hong, T. Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, Vol. 263, 1 April 2020, 114683. https://doi.org/10.1016/j.apenergy.2020.114683
dc.relation.references9. Guss H. & Linus R. (2020). Applying Machine Learning Algorithms for Anomaly Detection in Electricity Data: Improving the Energy Efficiency of Residential Buildings. Digitala Vetenskapliga Arkivet. Batish A., Agrawal A. (2019). Building Energy Prediction for Early-Design-Stage Decision Support: A Review of Data driven Techniques. Conference: Building Simulation 2019, Rome, Italy, September 2019. http://dx.doi.org/10.26868/25222708.2019.211032
dc.relation.references10. Faiq, M & Tan, K. (2023). Prediction of energy consumption in campus buildings using long short-term memory. Alexandria Engineering Journal, Vol. 67, 15 March 2023, 65–76. https://doi.org/10.1016/j.aej.2022.12.015
dc.relation.references11. Liu, D. & Wang, H. (2023). Time series analysis model for forecasting unsteady electric load in buildings. Energy and Built Environment, 15 July 2023. https://doi.org/10.1016/j.enbenv.2023.07.003
dc.relation.references12. Гече, Ф., Мулеса, О. (2021). Навчання комбінованої моделі прогнозування часових рядів. Український журнал інформаційних технологій. Вип. 3, № 1 : 44–48. https://doi.org/10.23939/ujit2021.03.044
dc.relation.references13. Hammoudeh A. & Dupont S. (2022). The prediction of residential building consumption using profiling and time encoding, Procedia Computer Science, Vol. 210, 7–11. https://doi.org/10.1016/j.procs.2022.10.113
dc.relation.references14. Chen, Y. & Chen, Z. (2022). Short-term load forecasting for multiple buildings: A length sensitivity based approach. Energy Reports, 8:14274–14288. http://dx.doi.org/10.1016/j.egyr.2022.10.425
dc.relation.references15. Luo, X. & Oyedele, L. (2023). A self-adaptive deep learning model for building electricity load prediction with moving horizon. Mach Learn Appl., 7 (2022), Article 100257. https://doi.org/10.1016/j.mlwa.2022.100257
dc.relation.references16. Wang Z. & Liu X.( 2023). A multivariate time series graph neural network for district heat load forecasting. Energy, Vol. 278, Part A, 1 September 2023, 127911. https://doi.org/10.1016/j.energy.2023.127911
dc.relation.references17. Panjapornpon, С. & Santi Bardeeniz, S. (2023). Explainable deep transfer learning for energy efficiency prediction based on uncertainty detection and identification. Energy and AI, Vol. 12, April 2023, 100224. https://doi.org/10.1016/j.egyai.2022.100224
dc.relation.references18. Granderson J. & Fernandes, S. (2023). Accuracy of hourly energy predictions for demand flexibility applications. Energy and Buildings, Vol. 295, 15 September 2023, 113297. https://doi.org/10.1016/j.enbuild.2023.113297
dc.relation.references19. González-Vida, A. & Jiménez, F. (2019). A methodology for energy multivariate time series forecasting in smart buildings based on feature selection. Energy and Buildings, Vol. 196, 1 August 2019, 71–82. https://doi.org/10.1016/j.enbuild.2019.05.021
dc.relation.references20. Yang, B. & Haghighat, F. (2021). Season-Based Occupancy Prediction in Residential Buildings Using Machine Learning Models. e-Prime – Advances in Electrical Engineering, Electronics and Energy, Vol. 1, 100003. https://doi.org/10.1016/j.prime.2021.100003
dc.relation.references21. Qiao, Q. & Yunusa-Kaltungo, A. (2023). Developing a machine learning based building energy consumption prediction approach using limited data: Boruta feature selection and empirical mode decomposition. Energy Reports, Vol. 9, December 2023, 3643–3660. https://doi.org/10.1016/j.egyr.2023.02.046
dc.relation.references22. Avendano, I. & Javan, F. (2023). Assessing the impact of employing machine learning-based baseline load prediction pipelines with sliding-window training scheme on offered flexibility estimation for different building categories. Energy and Buildings, Vol. 294, 1 September 2023, 113217. https://doi.org/10.1016/j.enbuild.2023.113217
dc.relation.references23. Fotopoulou E. (2017). Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings. Sensors, 17(9), 2054. https://doi.org/10.3390/s17092054
dc.relation.references24. Shapi, M. & Ramli, N. (2021). Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, Vol. 5, March 2021, 100037. https://doi.org/10.1016/j.dibe.2020.100037
dc.relation.references25. Lei, L. & Wei Chen, W. (2021). A building energy consumption prediction model based on rough set theory and deep learning algorithms. Energy and Buildings, Vol. 240, 1 June 2021, 110886. https://doi.org/10.1016/j.enbuild.2021.110886
dc.relation.references26. Jogunola, O. (2022). CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption. Energies, 15(3), 810. https://doi.org/10.3390/en15030810
dc.relation.references27. Amalou, I. & Mouhni N. (2022). Multivariate time series prediction by RNN architectures for energy consumption forecasting. Energy Reports Volume 8, Supplement 9, November 2022, 1084–1091. https://doi.org/10.1016/j.egyr.2022.07.139
dc.relation.references28. Schmida, L. & Roidl, M.(2023). Comparing statistical and machine learning methods for time series forecasting in data-driven logistics – A simulation study. arXiv – STAT – Machine Learning. March 2023. https://doi.org/10.48550/arXiv.2303.07139
dc.relation.references29. ASHRAE Handbook (2023). https://www.ashrae.org/technical-resources/ashrae-handbook
dc.relation.references30. Batish A., Agrawal A. (2019). Building Energy Prediction for Early-Design-Stage Decision Support: A Review of Data-driven Techniques. Conference: Building Simulation 2019, Rome, Italy, September 2019. http://dx.doi.org/10.26868/25222708.2019.211032
dc.relation.references31. Zhao, H. & Magoulès, F. (2012). A Review on the Prediction of Building Energy Consumption. Renewable and Sustainable Energy Reviews, Vol. 16 (6): 3586–92. https://doi.org/10.1016/j.rser.2012.02.049
dc.relation.references32. Encorp (2023). Balancing Energy Supply and Demand. https://encorp.com/demand-response/
dc.relation.references33. Chen Y. & Guo M. (2022). Physical energy and data-driven models in building energy prediction: A review. Energy Reports, Vol. 8, November 2022, 2656–2671. https://doi.org/10.1016/j.egyr.2022.01.162
dc.relation.references34. Liu H. & Liang J. (2023). A Review of Data-Driven Building Energy Prediction, Buildings 2023, 13(2), 532. https://www.utn.uu.se/sts/student/wp-content/uploads/2020/07/2007_Linus_Rustas_Herman_Guss.pdf
dc.relation.referencesen1. Dandotiya, B. (2020). Climate Change and Its Impact on Terrestrial Ecosystems, Impacts of Climate Change on Agriculture and Aquaculture, 140–157. IGI Global. http://dx.doi.org/10.4018/978-1-7998-3343-7.ch007
dc.relation.referencesen2. Popa A. (2022). A Semantically Data-Driven Classification Framework for Energy Consumption in Buildings. Energies, 2022, 15(9), 3155. https://doi.org/10.3390/en15093155
dc.relation.referencesen3. Runge J. & Zmeureanu R. (2019). Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review. Energies, 2019, 12(17), 3254. https://doi.org/10.3390/en12173254
dc.relation.referencesen4. Amasyali K. & El-Gohary N. M. (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, Vol. 81, Part 1, January 2018, 1192–1205. https://doi.org/10.1016/j.rser.2017.04.095
dc.relation.referencesen5. Sanzana M. R. & Maul T. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, Vol. 141, September 2022, 104445. https://doi.org/10.1016/j.autcon.2022.104445
dc.relation.referencesen6. Khandelwal, I., Adhikari, R. & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Computer Science, 48, 173–179. https://doi.org/10.1016/j.procs.2015.04.167
dc.relation.referencesen7. Markoska E. (2019). A Framework for Automated Real-Time Performance Evaluation of Smart Buildings. https://doi.org/10.21996/5hay-tm27
dc.relation.referencesen8. Wang, Z. & Hong, T. Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, Vol. 263, 1 April 2020, 114683. https://doi.org/10.1016/j.apenergy.2020.114683
dc.relation.referencesen9. Guss H. & Linus R. (2020). Applying Machine Learning Algorithms for Anomaly Detection in Electricity Data: Improving the Energy Efficiency of Residential Buildings. Digitala Vetenskapliga Arkivet. Batish A., Agrawal A. (2019). Building Energy Prediction for Early-Design-Stage Decision Support: A Review of Data driven Techniques. Conference: Building Simulation 2019, Rome, Italy, September 2019. http://dx.doi.org/10.26868/25222708.2019.211032
dc.relation.referencesen10. Faiq, M & Tan, K. (2023). Prediction of energy consumption in campus buildings using long short-term memory. Alexandria Engineering Journal, Vol. 67, 15 March 2023, 65–76. https://doi.org/10.1016/j.aej.2022.12.015
dc.relation.referencesen11. Liu, D. & Wang, H. (2023). Time series analysis model for forecasting unsteady electric load in buildings. Energy and Built Environment, 15 July 2023. https://doi.org/10.1016/j.enbenv.2023.07.003
dc.relation.referencesen12. Heche, F., Mulesa, O. (2021). Navchannia kombinovanoi modeli prohnozuvannia chasovykh riadiv. Ukrainskyi zhurnal informatsiinykh tekhnolohii. Iss. 3, No 1 : 44–48. https://doi.org/10.23939/ujit2021.03.044
dc.relation.referencesen13. Hammoudeh A. & Dupont S. (2022). The prediction of residential building consumption using profiling and time encoding, Procedia Computer Science, Vol. 210, 7–11. https://doi.org/10.1016/j.procs.2022.10.113
dc.relation.referencesen14. Chen, Y. & Chen, Z. (2022). Short-term load forecasting for multiple buildings: A length sensitivity based approach. Energy Reports, 8:14274–14288. http://dx.doi.org/10.1016/j.egyr.2022.10.425
dc.relation.referencesen15. Luo, X. & Oyedele, L. (2023). A self-adaptive deep learning model for building electricity load prediction with moving horizon. Mach Learn Appl., 7 (2022), Article 100257. https://doi.org/10.1016/j.mlwa.2022.100257
dc.relation.referencesen16. Wang Z. & Liu X.( 2023). A multivariate time series graph neural network for district heat load forecasting. Energy, Vol. 278, Part A, 1 September 2023, 127911. https://doi.org/10.1016/j.energy.2023.127911
dc.relation.referencesen17. Panjapornpon, S. & Santi Bardeeniz, S. (2023). Explainable deep transfer learning for energy efficiency prediction based on uncertainty detection and identification. Energy and AI, Vol. 12, April 2023, 100224. https://doi.org/10.1016/j.egyai.2022.100224
dc.relation.referencesen18. Granderson J. & Fernandes, S. (2023). Accuracy of hourly energy predictions for demand flexibility applications. Energy and Buildings, Vol. 295, 15 September 2023, 113297. https://doi.org/10.1016/j.enbuild.2023.113297
dc.relation.referencesen19. González-Vida, A. & Jiménez, F. (2019). A methodology for energy multivariate time series forecasting in smart buildings based on feature selection. Energy and Buildings, Vol. 196, 1 August 2019, 71–82. https://doi.org/10.1016/j.enbuild.2019.05.021
dc.relation.referencesen20. Yang, B. & Haghighat, F. (2021). Season-Based Occupancy Prediction in Residential Buildings Using Machine Learning Models. e-Prime – Advances in Electrical Engineering, Electronics and Energy, Vol. 1, 100003. https://doi.org/10.1016/j.prime.2021.100003
dc.relation.referencesen21. Qiao, Q. & Yunusa-Kaltungo, A. (2023). Developing a machine learning based building energy consumption prediction approach using limited data: Boruta feature selection and empirical mode decomposition. Energy Reports, Vol. 9, December 2023, 3643–3660. https://doi.org/10.1016/j.egyr.2023.02.046
dc.relation.referencesen22. Avendano, I. & Javan, F. (2023). Assessing the impact of employing machine learning-based baseline load prediction pipelines with sliding-window training scheme on offered flexibility estimation for different building categories. Energy and Buildings, Vol. 294, 1 September 2023, 113217. https://doi.org/10.1016/j.enbuild.2023.113217
dc.relation.referencesen23. Fotopoulou E. (2017). Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings. Sensors, 17(9), 2054. https://doi.org/10.3390/s17092054
dc.relation.referencesen24. Shapi, M. & Ramli, N. (2021). Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, Vol. 5, March 2021, 100037. https://doi.org/10.1016/j.dibe.2020.100037
dc.relation.referencesen25. Lei, L. & Wei Chen, W. (2021). A building energy consumption prediction model based on rough set theory and deep learning algorithms. Energy and Buildings, Vol. 240, 1 June 2021, 110886. https://doi.org/10.1016/j.enbuild.2021.110886
dc.relation.referencesen26. Jogunola, O. (2022). CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption. Energies, 15(3), 810. https://doi.org/10.3390/en15030810
dc.relation.referencesen27. Amalou, I. & Mouhni N. (2022). Multivariate time series prediction by RNN architectures for energy consumption forecasting. Energy Reports Volume 8, Supplement 9, November 2022, 1084–1091. https://doi.org/10.1016/j.egyr.2022.07.139
dc.relation.referencesen28. Schmida, L. & Roidl, M.(2023). Comparing statistical and machine learning methods for time series forecasting in data-driven logistics – A simulation study. arXiv – STAT – Machine Learning. March 2023. https://doi.org/10.48550/arXiv.2303.07139
dc.relation.referencesen29. ASHRAE Handbook (2023). https://www.ashrae.org/technical-resources/ashrae-handbook
dc.relation.referencesen30. Batish A., Agrawal A. (2019). Building Energy Prediction for Early-Design-Stage Decision Support: A Review of Data-driven Techniques. Conference: Building Simulation 2019, Rome, Italy, September 2019. http://dx.doi.org/10.26868/25222708.2019.211032
dc.relation.referencesen31. Zhao, H. & Magoulès, F. (2012). A Review on the Prediction of Building Energy Consumption. Renewable and Sustainable Energy Reviews, Vol. 16 (6): 3586–92. https://doi.org/10.1016/j.rser.2012.02.049
dc.relation.referencesen32. Encorp (2023). Balancing Energy Supply and Demand. https://encorp.com/demand-response/
dc.relation.referencesen33. Chen Y. & Guo M. (2022). Physical energy and data-driven models in building energy prediction: A review. Energy Reports, Vol. 8, November 2022, 2656–2671. https://doi.org/10.1016/j.egyr.2022.01.162
dc.relation.referencesen34. Liu H. & Liang J. (2023). A Review of Data-Driven Building Energy Prediction, Buildings 2023, 13(2), 532. https://www.utn.uu.se/sts/student/wp-content/uploads/2020/07/2007_Linus_Rustas_Herman_Guss.pdf
dc.relation.urihttp://dx.doi.org/10.4018/978-1-7998-3343-7.ch007
dc.relation.urihttps://doi.org/10.3390/en15093155
dc.relation.urihttps://doi.org/10.3390/en12173254
dc.relation.urihttps://doi.org/10.1016/j.rser.2017.04.095
dc.relation.urihttps://doi.org/10.1016/j.autcon.2022.104445
dc.relation.urihttps://doi.org/10.1016/j.procs.2015.04.167
dc.relation.urihttps://doi.org/10.21996/5hay-tm27
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2020.114683
dc.relation.urihttp://dx.doi.org/10.26868/25222708.2019.211032
dc.relation.urihttps://doi.org/10.1016/j.aej.2022.12.015
dc.relation.urihttps://doi.org/10.1016/j.enbenv.2023.07.003
dc.relation.urihttps://doi.org/10.23939/ujit2021.03.044
dc.relation.urihttps://doi.org/10.1016/j.procs.2022.10.113
dc.relation.urihttp://dx.doi.org/10.1016/j.egyr.2022.10.425
dc.relation.urihttps://doi.org/10.1016/j.mlwa.2022.100257
dc.relation.urihttps://doi.org/10.1016/j.energy.2023.127911
dc.relation.urihttps://doi.org/10.1016/j.egyai.2022.100224
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2023.113297
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2019.05.021
dc.relation.urihttps://doi.org/10.1016/j.prime.2021.100003
dc.relation.urihttps://doi.org/10.1016/j.egyr.2023.02.046
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2023.113217
dc.relation.urihttps://doi.org/10.3390/s17092054
dc.relation.urihttps://doi.org/10.1016/j.dibe.2020.100037
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2021.110886
dc.relation.urihttps://doi.org/10.3390/en15030810
dc.relation.urihttps://doi.org/10.1016/j.egyr.2022.07.139
dc.relation.urihttps://doi.org/10.48550/arXiv.2303.07139
dc.relation.urihttps://www.ashrae.org/technical-resources/ashrae-handbook
dc.relation.urihttps://doi.org/10.1016/j.rser.2012.02.049
dc.relation.urihttps://encorp.com/demand-response/
dc.relation.urihttps://doi.org/10.1016/j.egyr.2022.01.162
dc.relation.urihttps://www.utn.uu.se/sts/student/wp-content/uploads/2020/07/2007_Linus_Rustas_Herman_Guss.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Вишневський О. К., Журавчак Л. М., 2023
dc.subjectенергія
dc.subjectбудівля
dc.subjectенергоефективність
dc.subjectпрогнозування
dc.subjectчасовий ряд
dc.subjectмашинне навчання
dc.subjectenergy
dc.subjectbuildings
dc.subjectenergy efficiency
dc.subjectprognostication
dc.subjecttime series
dc.subjectmachine learning
dc.subject.udc004.4
dc.titleМетоди машинного навчання для підвищення енергоефективності будівель
dc.title.alternativeMachine learning methods to increase the energy efficiency of buildings
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n14_Vyshnevskyy_O-Machine_learning_methods_189-209.pdf
Size:
13.74 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n14_Vyshnevskyy_O-Machine_learning_methods_189-209__COVER.png
Size:
399.88 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: