The Principle of Construction of the Boiler Control System With Efficient Use of the Solid Fuel
dc.citation.epage | 103 | |
dc.citation.issue | 2 | |
dc.citation.spage | 96 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Kharchenko, Marko | |
dc.contributor.author | Klushyn, Yurii | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-19T09:44:33Z | |
dc.date.available | 2024-02-19T09:44:33Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | The system for controlling the economic operation of a solid fuel boiler is a device that controls and monitors the processes that occur during fuel combustion and water circulation in a solid fuel boiler. The system describes the combination of two main components: software and hardware. Based on these components, this article presents the method of building a system of economic operation of a solid fuel boiler, describes the development environment with its functions and capabilities, provides a detailed description for the user with explanations of key points in the operation of the system. This system is aimed at improving the quality of room heating and optimizing this process in order to regulate the desired temperature for the user with minimal error. All software tools interact with each other according to clearly defined protocols, so there are no system failures. | |
dc.format.extent | 96-103 | |
dc.format.pages | 8 | |
dc.identifier.citation | Kharchenko M. The Principle of Construction of the Boiler Control System With Efficient Use of the Solid Fuel / Marko Kharchenko, Yurii Klushyn // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 96–103. | |
dc.identifier.citationen | Kharchenko M. The Principle of Construction of the Boiler Control System With Efficient Use of the Solid Fuel / Marko Kharchenko, Yurii Klushyn // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 96–103. | |
dc.identifier.doi | doi.org/10.23939/acps2023.02.096 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61336 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 2 (8), 2023 | |
dc.relation.references | Tsiunyk B., Muliarevych O., (2022). Software System for Motion Detection and Trackin, Advances in Cyber- Physical Systems, Vol. 7, No. 2, pp. 156–162. DOI: https://doi.org/10.23939/acps2022.02.156. | |
dc.relation.references | SP-30, (2019). EcoTronic controler. [online] Available at: https://www.ecotronic.com.ua/en/sp-30-controller.html (Accessed: 01/02/2022). | |
dc.relation.references | TAL, (2018). TAL RT-22 manual [online] Available at: http://www.tal.com.pl/pliki/instrukcje/RT-22_ENG.pdf (Accessed: 01/02/2022). | |
dc.relation.references | Euroster, (2018). Euroster 20 manual [online] Available at: https://euroster.pl/en/download/instrukcje/TERMOSTATY/euroster-2005-txrx... (Accessed: 01/02/2022). | |
dc.relation.references | Chen X., & Chen J., (2018). An intelligent fault diagnosis system for a biomass boiler based on wavelet packet trans- form and fuzzy comprehensive evaluation. Energy, pp. 1287–1298. DOI: 10.1016/j.energy.2018.08.019. | |
dc.relation.references | Deng J., He L., & Wang J., (2020). Intelligent control system of biomass boiler based on artificial neural network optimized by particle swarm algorithm. Applied Thermal Engineering, pp. 166–176. DOI: 10.1016/ j.applthermaleng.2019.114582. | |
dc.relation.references | Wang B., Huang C., Xie H., & Su Y., (2018). Intelligent control of biomass boilers based on fuzzy control theory. Energy Procedia, pp. 352–357. DOI: 10.1016/j.egypro. 2018.09.248. | |
dc.relation.references | Chen T., Yan Y., Li G., & Yang X., (2020). Intelligent control of biomass boilers based on neural network and improved particle swarm optimization. IEEE Access, pp. 717–728. DOI: 10.1109/ACCESS.2020.3032355. | |
dc.relation.references | Cao H., Wang X., & Cao Y., (2021). Intelligent control of a biomass boiler using fuzzy logic and improved particle swarm optimization. Energy Conversion and Management, pp. 232–242. DOI: 10.1016/j.enconman.2021.113954. | |
dc.relation.referencesen | Tsiunyk B., Muliarevych O., (2022). Software System for Motion Detection and Trackin, Advances in Cyber- Physical Systems, Vol. 7, No. 2, pp. 156–162. DOI: https://doi.org/10.23939/acps2022.02.156. | |
dc.relation.referencesen | SP-30, (2019). EcoTronic controler. [online] Available at: https://www.ecotronic.com.ua/en/sp-30-controller.html (Accessed: 01/02/2022). | |
dc.relation.referencesen | TAL, (2018). TAL RT-22 manual [online] Available at: http://www.tal.com.pl/pliki/instrukcje/RT-22_ENG.pdf (Accessed: 01/02/2022). | |
dc.relation.referencesen | Euroster, (2018). Euroster 20 manual [online] Available at: https://euroster.pl/en/download/instrukcje/TERMOSTATY/euroster-2005-txrx... (Accessed: 01/02/2022). | |
dc.relation.referencesen | Chen X., & Chen J., (2018). An intelligent fault diagnosis system for a biomass boiler based on wavelet packet trans- form and fuzzy comprehensive evaluation. Energy, pp. 1287–1298. DOI: 10.1016/j.energy.2018.08.019. | |
dc.relation.referencesen | Deng J., He L., & Wang J., (2020). Intelligent control system of biomass boiler based on artificial neural network optimized by particle swarm algorithm. Applied Thermal Engineering, pp. 166–176. DOI: 10.1016/ j.applthermaleng.2019.114582. | |
dc.relation.referencesen | Wang B., Huang C., Xie H., & Su Y., (2018). Intelligent control of biomass boilers based on fuzzy control theory. Energy Procedia, pp. 352–357. DOI: 10.1016/j.egypro. 2018.09.248. | |
dc.relation.referencesen | Chen T., Yan Y., Li G., & Yang X., (2020). Intelligent control of biomass boilers based on neural network and improved particle swarm optimization. IEEE Access, pp. 717–728. DOI: 10.1109/ACCESS.2020.3032355. | |
dc.relation.referencesen | Cao H., Wang X., & Cao Y., (2021). Intelligent control of a biomass boiler using fuzzy logic and improved particle swarm optimization. Energy Conversion and Management, pp. 232–242. DOI: 10.1016/j.enconman.2021.113954. | |
dc.relation.uri | https://doi.org/10.23939/acps2022.02.156 | |
dc.relation.uri | https://www.ecotronic.com.ua/en/sp-30-controller.html | |
dc.relation.uri | http://www.tal.com.pl/pliki/instrukcje/RT-22_ENG.pdf | |
dc.relation.uri | https://euroster.pl/en/download/instrukcje/TERMOSTATY/euroster-2005-txrx.. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kharchenko M., Klushyn Yu., 2023 | |
dc.subject | solid fuel boiler | |
dc.subject | algorithm | |
dc.subject | functional blocks | |
dc.subject | industrial controller | |
dc.title | The Principle of Construction of the Boiler Control System With Efficient Use of the Solid Fuel | |
dc.type | Article |
Files
License bundle
1 - 1 of 1