Cyber-physical system for monitoring and analyzing human biomedical data
dc.citation.epage | 38 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Досягнення у кібер-фізичних системах | |
dc.citation.spage | 32 | |
dc.contributor.affiliation | Vasyl Stefanyk Precarpathian National University | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Wayne State University | |
dc.contributor.author | Kogut, Ihor | |
dc.contributor.author | Hryha, Volodymyr | |
dc.contributor.author | Dzundza, Bogdan | |
dc.contributor.author | Holota, Victor | |
dc.contributor.author | Benko, Taras | |
dc.contributor.author | Tkachuk, Taras | |
dc.contributor.author | Hatala, Iryna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-17T10:08:02Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | The measurement of arterial hemoglobin oxygen saturation, pulse, and blood pressure was presented. A review of methods for measuring arterial hemoglobin oxygen saturation based on photoplethysmography was provided. The architecture of the hardware and software platform of a cyber-physical system for the primary processing and transmission of information signals, based on a microcontroller with hardware encryption and a Bluetooth module for transmitting encrypted data to a mobile device and a remote server, was considered. Algorithms for measuring blood oxygen saturation and blood pressure were developed. An application for the Android operating system was designed for measuring human biomedical data in real time and analyzing their parameters over a specified period. The developed cyber-physical system is intended for use in medical institutions. | |
dc.format.extent | 32-38 | |
dc.format.pages | 7 | |
dc.identifier.citation | Cyber-physical system for monitoring and analyzing human biomedical data / Kogut Ihor, Hryha Volodymyr, Dzundza Bogdan, Holota Victor, Benko Taras, Tkachuk Taras, Hatala Iryna // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 32–38. | |
dc.identifier.citationen | Cyber-physical system for monitoring and analyzing human biomedical data / Kogut Ihor, Hryha Volodymyr, Dzundza Bogdan, Holota Victor, Benko Taras, Tkachuk Taras, Hatala Iryna // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 32–38. | |
dc.identifier.doi | doi.org/10.23939/acps2024.01.032 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64189 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Досягнення у кібер-фізичних системах, 1 (9), 2024 | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 1 (9), 2024 | |
dc.relation.references | [1] Chinthoju Anitha, Jaya Gayatri Chekka, Ravalika Nadigepu, Harish Kuchulakanti (2019). IoT Aided Noninvasive NIR Blood Glucose Monitoring Device, Learning and Analytics in Intelligent Systems, pp. 82–90. DOI: 0.1007/978-3-030-24322-7_11 | |
dc.relation.references | [2] Nemcova A., Vargova E., Smisek R., Marsanova L., Smital L., Vitek M. (2021). Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation, BioMed Research International, 3453007. DOI: 10.1155/2021/3453007 | |
dc.relation.references | [3] Mahmoud Ehnesh, Panos Abatis (2020) A portable electrocardiogram for realtime monitoring of cardiac signals, SN Applied Sciences, 1419. DOI: 10.1007/s42452-020-3065-9 | |
dc.relation.references | [4] Hotra Z., Mahlovanyy A., Mykytyuk Z., Vistak M., Ivakh M., Politanskyi R. (2019). Schematic realization of flexible algorithm in treatment diagnostic devices, International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, Ukraine, pp. 140–143. DOI: 10.1109/MEMSTECH.2019.8817378 | |
dc.relation.references | [5] Lepikh Y. I., Santoniy V. I., Budiyanskaya L. M., Yanko V. I., Balaban A. P. (2022). Intelligent electronicoptical sensor for information-measurement system of detection and identification of ground and aerodynamic objects, Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 25, No. 2, pp. 219–226. DOI: 10.15407/spqeo25.02.219 | |
dc.relation.references | [6] Fastykovsky P. P., Lepikh Y. I. (2020). Remote сompact seismic sensor for the moving person detection, IEEE Sensors Letters, Vol. 4, No. 8, p. 9134879. DOI: 10.18524/1815-7459.2021.4.248178 | |
dc.relation.references | [7] Klym H., Hadzaman I. (2022). Modifications of temperature sensors based on oxymanganospinel ceramics of NiMn2O4-CuMn2O4-MnCo2O4 system, 2022 IEEE 41st International Conference on Electronics and Nanotechnology, Kiev, Ukraine, pp. 270–273. DOI: 10.1109/ELNANO54667.2022.9927058 | |
dc.relation.references | [8] Barylo G. І., Holyaka R. L., Marusenkova T. A., Ivakh M. S. (2021). Structure and 3-D model of a solid state thin-film magnetic sensor, Physics and Chemistry of Solid State, Vol. 22, No. 3, pp. 444–452. DOI: 10.15330/pcss.22.3.444-452 | |
dc.relation.references | [9] Barylo G. І., Ivakh M. S., Mykytiuk I. P., Kremer I. P. (2020). Optical-electronics monitoring system of biomedical indicators, Physics and Chemistry of Solid State, Vol. 21, No. 4, pp. 779–784. DOI: 10.15330/pcss.21.4.779-784 | |
dc.relation.references | [10] Allen J. (2019). Photoplethysmography and its application in clinical physiological measurement”, Physiological Measurement, Vol. 28, No. 3, p. R1–R39. DOI: 10.1088/0967-3334/28/3/R01 | |
dc.relation.references | [11] Elisa Mejıa-Mejıa, John Allen, Karthik Budidha, Chadi El Hajj (2022). Photoplethysmography signal processing and synthesis, Photoplethysmography. Technology, Signal Analysis and Applications, pp. 69–146. DOI: 10.1016/B978-0-12-823374-0.00015-3 | |
dc.relation.references | [12] Elgendi M. (2020). PPG signal analysis: An introduction using MATLAB, 1st ed. CRC Press. pp. 72–85. DOI: 10.1201/9780429449581 | |
dc.relation.references | [13] Foroughian F., Bauder C. J. (2018) .The wavelength selection for calibrating non contact detection of blood oxygen satuartion using imaging photoplethysmography. 2018 United States National Committee of URSI National Radio Science Meeting (USNC–URSI NRSM), pp. 1–2. DOI: 10.1155/2018325154067. | |
dc.relation.references | [14] Dzundza B. S., Kohut I. T., Holota V. I., Turovska L. V., Deichakivskyi M. V. (2022). Principles of construction of hybrid microsystems for biomedical applications, Physics and Chemistry of Solid State, Vol. 23, No. 4, pp. 776–784. DOI: 10.15330/pcss.23.4.776-784 | |
dc.relation.references | [15] Mykytyuk Z., Barylo G., Kremer I., Ivakh M., Kachurak Y., Kogut I. (2022). Features of the transition to the isotropic state of the liquid crystal sensitive element of the gas sensor under the action of acetone vapor, Physics and chemistry of solid state, Vol. 23, No. 3, pp. 473–487. DOI: 10.15330/pcss.23.3.473-477 | |
dc.relation.references | [16] Viotti J. C., Kinderkhedia M. (2022). A Benchmark of JSON-compatible binary serialization specifications. DOI: 10.48550/ARXIV.2201.03051. | |
dc.relation.referencesen | [1] Chinthoju Anitha, Jaya Gayatri Chekka, Ravalika Nadigepu, Harish Kuchulakanti (2019). IoT Aided Noninvasive NIR Blood Glucose Monitoring Device, Learning and Analytics in Intelligent Systems, pp. 82–90. DOI: 0.1007/978-3-030-24322-7_11 | |
dc.relation.referencesen | [2] Nemcova A., Vargova E., Smisek R., Marsanova L., Smital L., Vitek M. (2021). Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation, BioMed Research International, 3453007. DOI: 10.1155/2021/3453007 | |
dc.relation.referencesen | [3] Mahmoud Ehnesh, Panos Abatis (2020) A portable electrocardiogram for realtime monitoring of cardiac signals, SN Applied Sciences, 1419. DOI: 10.1007/s42452-020-3065-9 | |
dc.relation.referencesen | [4] Hotra Z., Mahlovanyy A., Mykytyuk Z., Vistak M., Ivakh M., Politanskyi R. (2019). Schematic realization of flexible algorithm in treatment diagnostic devices, International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, Ukraine, pp. 140–143. DOI: 10.1109/MEMSTECH.2019.8817378 | |
dc.relation.referencesen | [5] Lepikh Y. I., Santoniy V. I., Budiyanskaya L. M., Yanko V. I., Balaban A. P. (2022). Intelligent electronicoptical sensor for information-measurement system of detection and identification of ground and aerodynamic objects, Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 25, No. 2, pp. 219–226. DOI: 10.15407/spqeo25.02.219 | |
dc.relation.referencesen | [6] Fastykovsky P. P., Lepikh Y. I. (2020). Remote sompact seismic sensor for the moving person detection, IEEE Sensors Letters, Vol. 4, No. 8, p. 9134879. DOI: 10.18524/1815-7459.2021.4.248178 | |
dc.relation.referencesen | [7] Klym H., Hadzaman I. (2022). Modifications of temperature sensors based on oxymanganospinel ceramics of NiMn2O4-CuMn2O4-MnCo2O4 system, 2022 IEEE 41st International Conference on Electronics and Nanotechnology, Kiev, Ukraine, pp. 270–273. DOI: 10.1109/ELNANO54667.2022.9927058 | |
dc.relation.referencesen | [8] Barylo G. I., Holyaka R. L., Marusenkova T. A., Ivakh M. S. (2021). Structure and 3-D model of a solid state thin-film magnetic sensor, Physics and Chemistry of Solid State, Vol. 22, No. 3, pp. 444–452. DOI: 10.15330/pcss.22.3.444-452 | |
dc.relation.referencesen | [9] Barylo G. I., Ivakh M. S., Mykytiuk I. P., Kremer I. P. (2020). Optical-electronics monitoring system of biomedical indicators, Physics and Chemistry of Solid State, Vol. 21, No. 4, pp. 779–784. DOI: 10.15330/pcss.21.4.779-784 | |
dc.relation.referencesen | [10] Allen J. (2019). Photoplethysmography and its application in clinical physiological measurement", Physiological Measurement, Vol. 28, No. 3, p. R1–R39. DOI: 10.1088/0967-3334/28/3/R01 | |
dc.relation.referencesen | [11] Elisa Mejıa-Mejıa, John Allen, Karthik Budidha, Chadi El Hajj (2022). Photoplethysmography signal processing and synthesis, Photoplethysmography. Technology, Signal Analysis and Applications, pp. 69–146. DOI: 10.1016/B978-0-12-823374-0.00015-3 | |
dc.relation.referencesen | [12] Elgendi M. (2020). PPG signal analysis: An introduction using MATLAB, 1st ed. CRC Press. pp. 72–85. DOI: 10.1201/9780429449581 | |
dc.relation.referencesen | [13] Foroughian F., Bauder C. J. (2018) .The wavelength selection for calibrating non contact detection of blood oxygen satuartion using imaging photoplethysmography. 2018 United States National Committee of URSI National Radio Science Meeting (USNC–URSI NRSM), pp. 1–2. DOI: 10.1155/2018325154067. | |
dc.relation.referencesen | [14] Dzundza B. S., Kohut I. T., Holota V. I., Turovska L. V., Deichakivskyi M. V. (2022). Principles of construction of hybrid microsystems for biomedical applications, Physics and Chemistry of Solid State, Vol. 23, No. 4, pp. 776–784. DOI: 10.15330/pcss.23.4.776-784 | |
dc.relation.referencesen | [15] Mykytyuk Z., Barylo G., Kremer I., Ivakh M., Kachurak Y., Kogut I. (2022). Features of the transition to the isotropic state of the liquid crystal sensitive element of the gas sensor under the action of acetone vapor, Physics and chemistry of solid state, Vol. 23, No. 3, pp. 473–487. DOI: 10.15330/pcss.23.3.473-477 | |
dc.relation.referencesen | [16] Viotti J. C., Kinderkhedia M. (2022). A Benchmark of JSON-compatible binary serialization specifications. DOI: 10.48550/ARXIV.2201.03051. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Kogut I., Hryha V., Dzundza B., Holota V., Benko T., Tkachuk T., Hatala I., 2024 | |
dc.subject | Cyber-physical systems | |
dc.subject | Biomedical data | |
dc.subject | Photoplethysmography | |
dc.subject | Pulse | |
dc.subject | Blood pressure | |
dc.title | Cyber-physical system for monitoring and analyzing human biomedical data | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1