Cyber-physical system for monitoring and analyzing human biomedical data

dc.citation.epage38
dc.citation.issue1
dc.citation.journalTitleДосягнення у кібер-фізичних системах
dc.citation.spage32
dc.contributor.affiliationVasyl Stefanyk Precarpathian National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationWayne State University
dc.contributor.authorKogut, Ihor
dc.contributor.authorHryha, Volodymyr
dc.contributor.authorDzundza, Bogdan
dc.contributor.authorHolota, Victor
dc.contributor.authorBenko, Taras
dc.contributor.authorTkachuk, Taras
dc.contributor.authorHatala, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T10:08:02Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe measurement of arterial hemoglobin oxygen saturation, pulse, and blood pressure was presented. A review of methods for measuring arterial hemoglobin oxygen saturation based on photoplethysmography was provided. The architecture of the hardware and software platform of a cyber-physical system for the primary processing and transmission of information signals, based on a microcontroller with hardware encryption and a Bluetooth module for transmitting encrypted data to a mobile device and a remote server, was considered. Algorithms for measuring blood oxygen saturation and blood pressure were developed. An application for the Android operating system was designed for measuring human biomedical data in real time and analyzing their parameters over a specified period. The developed cyber-physical system is intended for use in medical institutions.
dc.format.extent32-38
dc.format.pages7
dc.identifier.citationCyber-physical system for monitoring and analyzing human biomedical data / Kogut Ihor, Hryha Volodymyr, Dzundza Bogdan, Holota Victor, Benko Taras, Tkachuk Taras, Hatala Iryna // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 32–38.
dc.identifier.citationenCyber-physical system for monitoring and analyzing human biomedical data / Kogut Ihor, Hryha Volodymyr, Dzundza Bogdan, Holota Victor, Benko Taras, Tkachuk Taras, Hatala Iryna // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 32–38.
dc.identifier.doidoi.org/10.23939/acps2024.01.032
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64189
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кібер-фізичних системах, 1 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 1 (9), 2024
dc.relation.references[1] Chinthoju Anitha, Jaya Gayatri Chekka, Ravalika Nadigepu, Harish Kuchulakanti (2019). IoT Aided Noninvasive NIR Blood Glucose Monitoring Device, Learning and Analytics in Intelligent Systems, pp. 82–90. DOI: 0.1007/978-3-030-24322-7_11
dc.relation.references[2] Nemcova A., Vargova E., Smisek R., Marsanova L., Smital L., Vitek M. (2021). Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation, BioMed Research International, 3453007. DOI: 10.1155/2021/3453007
dc.relation.references[3] Mahmoud Ehnesh, Panos Abatis (2020) A portable electrocardiogram for realtime monitoring of cardiac signals, SN Applied Sciences, 1419. DOI: 10.1007/s42452-020-3065-9
dc.relation.references[4] Hotra Z., Mahlovanyy A., Mykytyuk Z., Vistak M., Ivakh M., Politanskyi R. (2019). Schematic realization of flexible algorithm in treatment diagnostic devices, International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, Ukraine, pp. 140–143. DOI: 10.1109/MEMSTECH.2019.8817378
dc.relation.references[5] Lepikh Y. I., Santoniy V. I., Budiyanskaya L. M., Yanko V. I., Balaban A. P. (2022). Intelligent electronicoptical sensor for information-measurement system of detection and identification of ground and aerodynamic objects, Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 25, No. 2, pp. 219–226. DOI: 10.15407/spqeo25.02.219
dc.relation.references[6] Fastykovsky P. P., Lepikh Y. I. (2020). Remote сompact seismic sensor for the moving person detection, IEEE Sensors Letters, Vol. 4, No. 8, p. 9134879. DOI: 10.18524/1815-7459.2021.4.248178
dc.relation.references[7] Klym H., Hadzaman I. (2022). Modifications of temperature sensors based on oxymanganospinel ceramics of NiMn2O4-CuMn2O4-MnCo2O4 system, 2022 IEEE 41st International Conference on Electronics and Nanotechnology, Kiev, Ukraine, pp. 270–273. DOI: 10.1109/ELNANO54667.2022.9927058
dc.relation.references[8] Barylo G. І., Holyaka R. L., Marusenkova T. A., Ivakh M. S. (2021). Structure and 3-D model of a solid state thin-film magnetic sensor, Physics and Chemistry of Solid State, Vol. 22, No. 3, pp. 444–452. DOI: 10.15330/pcss.22.3.444-452
dc.relation.references[9] Barylo G. І., Ivakh M. S., Mykytiuk I. P., Kremer I. P. (2020). Optical-electronics monitoring system of biomedical indicators, Physics and Chemistry of Solid State, Vol. 21, No. 4, pp. 779–784. DOI: 10.15330/pcss.21.4.779-784
dc.relation.references[10] Allen J. (2019). Photoplethysmography and its application in clinical physiological measurement”, Physiological Measurement, Vol. 28, No. 3, p. R1–R39. DOI: 10.1088/0967-3334/28/3/R01
dc.relation.references[11] Elisa Mejıa-Mejıa, John Allen, Karthik Budidha, Chadi El Hajj (2022). Photoplethysmography signal processing and synthesis, Photoplethysmography. Technology, Signal Analysis and Applications, pp. 69–146. DOI: 10.1016/B978-0-12-823374-0.00015-3
dc.relation.references[12] Elgendi M. (2020). PPG signal analysis: An introduction using MATLAB, 1st ed. CRC Press. pp. 72–85. DOI: 10.1201/9780429449581
dc.relation.references[13] Foroughian F., Bauder C. J. (2018) .The wavelength selection for calibrating non contact detection of blood oxygen satuartion using imaging photoplethysmography. 2018 United States National Committee of URSI National Radio Science Meeting (USNC–URSI NRSM), pp. 1–2. DOI: 10.1155/2018325154067.
dc.relation.references[14] Dzundza B. S., Kohut I. T., Holota V. I., Turovska L. V., Deichakivskyi M. V. (2022). Principles of construction of hybrid microsystems for biomedical applications, Physics and Chemistry of Solid State, Vol. 23, No. 4, pp. 776–784. DOI: 10.15330/pcss.23.4.776-784
dc.relation.references[15] Mykytyuk Z., Barylo G., Kremer I., Ivakh M., Kachurak Y., Kogut I. (2022). Features of the transition to the isotropic state of the liquid crystal sensitive element of the gas sensor under the action of acetone vapor, Physics and chemistry of solid state, Vol. 23, No. 3, pp. 473–487. DOI: 10.15330/pcss.23.3.473-477
dc.relation.references[16] Viotti J. C., Kinderkhedia M. (2022). A Benchmark of JSON-compatible binary serialization specifications. DOI: 10.48550/ARXIV.2201.03051.
dc.relation.referencesen[1] Chinthoju Anitha, Jaya Gayatri Chekka, Ravalika Nadigepu, Harish Kuchulakanti (2019). IoT Aided Noninvasive NIR Blood Glucose Monitoring Device, Learning and Analytics in Intelligent Systems, pp. 82–90. DOI: 0.1007/978-3-030-24322-7_11
dc.relation.referencesen[2] Nemcova A., Vargova E., Smisek R., Marsanova L., Smital L., Vitek M. (2021). Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation, BioMed Research International, 3453007. DOI: 10.1155/2021/3453007
dc.relation.referencesen[3] Mahmoud Ehnesh, Panos Abatis (2020) A portable electrocardiogram for realtime monitoring of cardiac signals, SN Applied Sciences, 1419. DOI: 10.1007/s42452-020-3065-9
dc.relation.referencesen[4] Hotra Z., Mahlovanyy A., Mykytyuk Z., Vistak M., Ivakh M., Politanskyi R. (2019). Schematic realization of flexible algorithm in treatment diagnostic devices, International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, Ukraine, pp. 140–143. DOI: 10.1109/MEMSTECH.2019.8817378
dc.relation.referencesen[5] Lepikh Y. I., Santoniy V. I., Budiyanskaya L. M., Yanko V. I., Balaban A. P. (2022). Intelligent electronicoptical sensor for information-measurement system of detection and identification of ground and aerodynamic objects, Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 25, No. 2, pp. 219–226. DOI: 10.15407/spqeo25.02.219
dc.relation.referencesen[6] Fastykovsky P. P., Lepikh Y. I. (2020). Remote sompact seismic sensor for the moving person detection, IEEE Sensors Letters, Vol. 4, No. 8, p. 9134879. DOI: 10.18524/1815-7459.2021.4.248178
dc.relation.referencesen[7] Klym H., Hadzaman I. (2022). Modifications of temperature sensors based on oxymanganospinel ceramics of NiMn2O4-CuMn2O4-MnCo2O4 system, 2022 IEEE 41st International Conference on Electronics and Nanotechnology, Kiev, Ukraine, pp. 270–273. DOI: 10.1109/ELNANO54667.2022.9927058
dc.relation.referencesen[8] Barylo G. I., Holyaka R. L., Marusenkova T. A., Ivakh M. S. (2021). Structure and 3-D model of a solid state thin-film magnetic sensor, Physics and Chemistry of Solid State, Vol. 22, No. 3, pp. 444–452. DOI: 10.15330/pcss.22.3.444-452
dc.relation.referencesen[9] Barylo G. I., Ivakh M. S., Mykytiuk I. P., Kremer I. P. (2020). Optical-electronics monitoring system of biomedical indicators, Physics and Chemistry of Solid State, Vol. 21, No. 4, pp. 779–784. DOI: 10.15330/pcss.21.4.779-784
dc.relation.referencesen[10] Allen J. (2019). Photoplethysmography and its application in clinical physiological measurement", Physiological Measurement, Vol. 28, No. 3, p. R1–R39. DOI: 10.1088/0967-3334/28/3/R01
dc.relation.referencesen[11] Elisa Mejıa-Mejıa, John Allen, Karthik Budidha, Chadi El Hajj (2022). Photoplethysmography signal processing and synthesis, Photoplethysmography. Technology, Signal Analysis and Applications, pp. 69–146. DOI: 10.1016/B978-0-12-823374-0.00015-3
dc.relation.referencesen[12] Elgendi M. (2020). PPG signal analysis: An introduction using MATLAB, 1st ed. CRC Press. pp. 72–85. DOI: 10.1201/9780429449581
dc.relation.referencesen[13] Foroughian F., Bauder C. J. (2018) .The wavelength selection for calibrating non contact detection of blood oxygen satuartion using imaging photoplethysmography. 2018 United States National Committee of URSI National Radio Science Meeting (USNC–URSI NRSM), pp. 1–2. DOI: 10.1155/2018325154067.
dc.relation.referencesen[14] Dzundza B. S., Kohut I. T., Holota V. I., Turovska L. V., Deichakivskyi M. V. (2022). Principles of construction of hybrid microsystems for biomedical applications, Physics and Chemistry of Solid State, Vol. 23, No. 4, pp. 776–784. DOI: 10.15330/pcss.23.4.776-784
dc.relation.referencesen[15] Mykytyuk Z., Barylo G., Kremer I., Ivakh M., Kachurak Y., Kogut I. (2022). Features of the transition to the isotropic state of the liquid crystal sensitive element of the gas sensor under the action of acetone vapor, Physics and chemistry of solid state, Vol. 23, No. 3, pp. 473–487. DOI: 10.15330/pcss.23.3.473-477
dc.relation.referencesen[16] Viotti J. C., Kinderkhedia M. (2022). A Benchmark of JSON-compatible binary serialization specifications. DOI: 10.48550/ARXIV.2201.03051.
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Kogut I., Hryha V., Dzundza B., Holota V., Benko T., Tkachuk T., Hatala I., 2024
dc.subjectCyber-physical systems
dc.subjectBiomedical data
dc.subjectPhotoplethysmography
dc.subjectPulse
dc.subjectBlood pressure
dc.titleCyber-physical system for monitoring and analyzing human biomedical data
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n1_Kogut_I-Cyber_physical_system_for_monitoring_32-38.pdf
Size:
259.93 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n1_Kogut_I-Cyber_physical_system_for_monitoring_32-38__COVER.png
Size:
535.3 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: