Physico-mechanical properties of epoxy composites filled with metallized polyamide granule
| dc.citation.epage | 230 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 221 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Технічний університет Кошице | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Technical University in Košice | |
| dc.contributor.author | Кучеренко, А. М. | |
| dc.contributor.author | Довгий, В. І. | |
| dc.contributor.author | Дулебова, Л. | |
| dc.contributor.author | Кузнецова, М. Я. | |
| dc.contributor.author | Моравський, В. С. | |
| dc.contributor.author | Kucherenko, A. M. | |
| dc.contributor.author | Dovhyi, V. I. | |
| dc.contributor.author | Dulebova, L. | |
| dc.contributor.author | Kuznetsova, M. Ya. | |
| dc.contributor.author | Moravskyi, V. S. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T08:00:01Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Досліджено фізико-механічні властивості епоксидних композитів, наповнених мідненими гранулами поліаміду. Фізико-механічні властивості оцінено за результатами дослідження на розтяг та ударну в’язкість. Показано, що в одержаних композитів високі міцнісні властивості, які зберігаються на рівні ненаповненої матриці. Встановлено, що наявність на поверхні гранул поліаміду мідної оболонки незначно впливає на зміну фізико-механічних властивостей епоксидних композитів. Зроблено спробу пояснити одержані результати з використанням значень міцності адгезійного шару, що формується між епоксидною матрицею і різними за природою поверхнями наповнювача. | |
| dc.description.abstract | The physical and mechanical properties of epoxy composites filled with copper-plated polyamide granules were investigated. Physico-mechanical properties were evaluated based on the results of tensile and impact toughness studies. It is shown that the obtained composites have high strength properties, which are preserved at the level of the unfilled matrix. It was established that the presence of polyamide granules of a copper shell on the surface has little effect on the change in the physical and mechanical properties of epoxy composites. An attempt was made to explain the obtained results using the values of the strength of the adhesive layer formed between the epoxy matrix and the surface of the filler, which is different in nature. | |
| dc.format.extent | 221-230 | |
| dc.format.pages | 10 | |
| dc.identifier.citation | Physico-mechanical properties of epoxy composites filled with metallized polyamide granule / A. M. Kucherenko, V. I. Dovhyi, L. Dulebova, M. Ya. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 221–230. | |
| dc.identifier.citationen | Physico-mechanical properties of epoxy composites filled with metallized polyamide granule / A. M. Kucherenko, V. I. Dovhyi, L. Dulebova, M. Ya. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 221–230. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.221 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111750 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Jerold Samuel Chelladurai S., Arthanari R., Meera M.R. (2022). Epoxy-Based Composites. IntechOpen. doi: 10.5772/intechopen.97898 | |
| dc.relation.references | 2. Naveen Kumar G., Rajesh K., Rama Durga Rao M., Sai Bharath K.P., Javvadi Eswara Manikanta. (2023). A review on mechanical properties of hybrid polymer composites. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.05.059 | |
| dc.relation.references | 3. Jothi Arunachalam S., Saravanan R. (2023). Study on filler reinforcement in polymer matrix composites - A review. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.06.102 | |
| dc.relation.references | 4. Mechin P.-Y., Keryvin V., Grandidier J.-C. (2021). Effect of the nano-filler content on the compressive strength of continuous carbon fibre/epoxy matrix composites. Composites Part B: Engineering, 224, 109223. https://doi.org/10.1016/j.compositesb.2021.109223 | |
| dc.relation.references | 5. Ranjith K., Prithvi C., Rajesh Mathivanan N., Rakshith Gowda D.S. (2023). Experimental and Numerical Investigation on Damage Resistance Characteristics of Woven E-Glass/Epoxy Composite Laminates Subjected to Drop-Weight Impacts. Engineering Proceedings, 59(1), 88. https://doi.org/10.3390/engproc2023059088 | |
| dc.relation.references | 6. Chung S., Im Y., Jeong H., Nakagawa T. (2003). The effects of metal filler on the characteristics of casting resin for semi-metallic soft tools. J. Mater. Process. Technol., 134, 26-34. https://doi.org/10.1016/S0924-0136(02)00275-3 | |
| dc.relation.references | 7. Bhagyashekar M.S., Rao R.M.V.G.K. (2007). Effects of Material Test Parameters on the Wear Behavior of Particulate Filled Composites Part 2: Cu-Epoxy and Al-Epoxy Composites. J. Reinf. Plast. Compos., 26, 1769-1780. https://doi.org/10.1177/0731684407079525 | |
| dc.relation.references | 8. Durand J.M., Vardavoulias M., Jeandin M. (1995). Role of reinforcing ceramic particles in the wear behavior of polymer based model composites. Wear, 181-183, 833-839. https://doi.org/10.1016/0043-1648(95)90203-1 | |
| dc.relation.references | 9. Bharadwaja K., Sreeram srinivasa rao, Baburao T. (2022). Epoxy/SiO2 nanocomposite mechanical properties and tribological performance. Materials Today: Proceedings, 62(4), 1712-1716. https://doi.org/10.1016/j.matpr.2021.12.172 | |
| dc.relation.references | 10. Bharadwaja K., Sreeram Srinivasa Rao, Baburao T. (2022). Epoxy reinforced with nano TiO2 particles: An experimental investigation of mechanical & tribological behaviour. Materials Today: Proceedings, 62(4), 1817-1820, https://doi.org/10.1016/j.matpr.2021.12.449 | |
| dc.relation.references | 11. Zhang M.Q., Rong M.Z., Yu S.L., Wetzel B., Friedrich K. (2002). Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear, 253(9-10), 1086-1093. https://doi.org/10.1016/S0043-1648(02)00252-1. | |
| dc.relation.references | 12. Bhavith K., Prashanth Pai M, Sudheer M, Ramachandra C G, Maruthi Prashanth B H, Kiran Kumar B. (2023). The Effect of Metal Filler on the Mechanical Performance of Epoxy Resin Composites. Engineering Proceedings, 59(1), 200. https://doi.org/10.3390/engproc2023059200 | |
| dc.relation.references | 13. Monoranu M., Mitchell R.L., Kerrigan K., Fairclough J., Ghadbeigi H. (2022). The effect of particle reinforcements on chip formation and machining induced damage of modified epoxy carbon fibre reinforced polymers (CFRPs). Composites Part A: Applied Science and Manufacturing, 154, 106793. https://doi.org/10.1016/j.compositesa.2021.106793 | |
| dc.relation.references | 14. Papageorgiou D., Terzopoulou Z., Fina A., Cuttica F., Papageorgiou G., Bikiaris D., Chrissafis K., Young R., Kinloch I. (2018). Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Composites Science and Technology, 156, 95-102. https://doi.org/10.1016/j.compscitech.2017.12.019 | |
| dc.relation.references | 15. Zheng J., Liu Y., Wang Q., Cheng L., Zhang C., Zhang T., Shao J., Dai F. (2024). Mechanical properties and thermal characteristics of three nano-filler/silk fiber reinforced hybrid composites: A comparative study using a ductile epoxy resin matrix. Polymer Testing, 130, 108319. https://doi.org/10.1016/j.polymertesting.2023.108319 | |
| dc.relation.references | 16. Dhiwar D., Verma S.K., Gupta N., Agnihotri P.K. (2024). Augmenting the fracture toughness and structural health monitoring capabilities in Kevlar/epoxy composites using carbon nanotubes. Engineering Fracture Mechanics, 297, 109877. https://doi.org/10.1016/j.engfracmech.2024.109877 | |
| dc.relation.references | 17. Li Z., Qi X., Liu C., Fan B., Yang X. (2023). Particle size effect of PTFE on friction and wear properties of glass fiber reinforced epoxy resin composites. Wear, 532-533, 205104. https://doi.org/10.1016/j.wear.2023.205104 | |
| dc.relation.references | 18. Kiran M.D., Lokesh Yadhav B R., Babbar A., Kumar R., Sharath Chandra H S, Shetty R.P., Sudeepa K B, Sampath Kumar L, Kaur R., Meshel Q. Alkahtani, Islam S., Kumar R. (2024). Tribological properties of CNT-filled epoxy-carbon fabric composites: Optimization and modelling by machine learning. Journal of Materials Research and Technology, 28, 2582-2601. https://doi.org/10.1016/j.jmrt.2023.12.175 | |
| dc.relation.references | 19. Adak N.C., Lee G.-H., Tung H.T., Lim S., Lingappan N., Kang H.W., Lee W. (2023). Superior high-temperature mechanical and thermal performance of carbon fiber/epoxy composites by incorporating highly dispersed aramid nanofibers. Applied Materials Today, 35, 101956. https://doi.org/10.1016/j.apmt.2023.101956 | |
| dc.relation.references | 20. Soni C., Patnaik P.K., Mishra S.K., Panda S.S., Rath K.C. (2023). Sisal fiber and groundnut shell particulate reinforced hybrid epoxy composites: A study on mechanical and tribological properties. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.11.041 | |
| dc.relation.references | 21. Chen C., Xue Y., Li X., Wen Y., Liu J., Xue Z., Shi D., Zhou X., Xie X., Mai Y.-W. (2019). High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Composites Part A: Applied Science and Manufacturing, 118, 67-74. https://doi.org/10.1016/j.compositesa.2018.12.019 | |
| dc.relation.references | 22. Wu Y., Fang R., Zhou Z., Cai F., Hu Y., Zhang X. (2024). Theoretical study on thermal conductivity of epoxy composites doped with boron nitride with multiple dimensions. Materials Today Communications, 38, 107972. https://doi.org/10.1016/j.mtcomm.2023.107972 | |
| dc.relation.references | 23. Akçay S.B., Kocaman M., Çelebi M., Güler O., Varol T. (2024). Surface modification for improving interfacial, mechanical and thermal performance characteristics in epoxy composites: Electroless nickel enhancement of dendritic copper particle-reinforced epoxy. Surface and Coatings Technology, 478, 130417. https://doi.org/10.1016/j.surfcoat.2024.130417 | |
| dc.relation.references | 24. Kucherenko A.N., Mankevych S.O., Kuznetsova M.Ya., Moravskyi V.S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140-145. https://doi.org/10.23939/ctas2020.02.140 | |
| dc.relation.references | 25. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E., Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856 https://doi.org/10.3390/ma13122856 | |
| dc.relation.references | 26. Kucherenko A., Nikitchuk O., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4(1), 191-197. https://doi.org/10.23939/ctas2021.01.191 | |
| dc.relation.references | 27. WAXSFIT - Analysis of X-RAY diffraction curves. Available online: http://www2.ath.bielsko.pl/~mrabiej/waxsfit/sub/main_en/ (accessed on 04.12.2023). | |
| dc.relation.references | 28. Tadayyon Gh., Zebarjad S.M., Sajjadi S.A. (2011). Effect of both nano-size alumina particles and severe deformation on polyethylene crystallinity index. Journal of Thermoplastic Composite Materials, 25(4), 479-490. DOI: 10.1177/0892705711415186 | |
| dc.relation.referencesen | 1. Jerold Samuel Chelladurai S., Arthanari R., Meera M.R. (2022). Epoxy-Based Composites. IntechOpen. doi: 10.5772/intechopen.97898 | |
| dc.relation.referencesen | 2. Naveen Kumar G., Rajesh K., Rama Durga Rao M., Sai Bharath K.P., Javvadi Eswara Manikanta. (2023). A review on mechanical properties of hybrid polymer composites. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.05.059 | |
| dc.relation.referencesen | 3. Jothi Arunachalam S., Saravanan R. (2023). Study on filler reinforcement in polymer matrix composites - A review. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.06.102 | |
| dc.relation.referencesen | 4. Mechin P.-Y., Keryvin V., Grandidier J.-C. (2021). Effect of the nano-filler content on the compressive strength of continuous carbon fibre/epoxy matrix composites. Composites Part B: Engineering, 224, 109223. https://doi.org/10.1016/j.compositesb.2021.109223 | |
| dc.relation.referencesen | 5. Ranjith K., Prithvi C., Rajesh Mathivanan N., Rakshith Gowda D.S. (2023). Experimental and Numerical Investigation on Damage Resistance Characteristics of Woven E-Glass/Epoxy Composite Laminates Subjected to Drop-Weight Impacts. Engineering Proceedings, 59(1), 88. https://doi.org/10.3390/engproc2023059088 | |
| dc.relation.referencesen | 6. Chung S., Im Y., Jeong H., Nakagawa T. (2003). The effects of metal filler on the characteristics of casting resin for semi-metallic soft tools. J. Mater. Process. Technol., 134, 26-34. https://doi.org/10.1016/S0924-0136(02)00275-3 | |
| dc.relation.referencesen | 7. Bhagyashekar M.S., Rao R.M.V.G.K. (2007). Effects of Material Test Parameters on the Wear Behavior of Particulate Filled Composites Part 2: Cu-Epoxy and Al-Epoxy Composites. J. Reinf. Plast. Compos., 26, 1769-1780. https://doi.org/10.1177/0731684407079525 | |
| dc.relation.referencesen | 8. Durand J.M., Vardavoulias M., Jeandin M. (1995). Role of reinforcing ceramic particles in the wear behavior of polymer based model composites. Wear, 181-183, 833-839. https://doi.org/10.1016/0043-1648(95)90203-1 | |
| dc.relation.referencesen | 9. Bharadwaja K., Sreeram srinivasa rao, Baburao T. (2022). Epoxy/SiO2 nanocomposite mechanical properties and tribological performance. Materials Today: Proceedings, 62(4), 1712-1716. https://doi.org/10.1016/j.matpr.2021.12.172 | |
| dc.relation.referencesen | 10. Bharadwaja K., Sreeram Srinivasa Rao, Baburao T. (2022). Epoxy reinforced with nano TiO2 particles: An experimental investigation of mechanical & tribological behaviour. Materials Today: Proceedings, 62(4), 1817-1820, https://doi.org/10.1016/j.matpr.2021.12.449 | |
| dc.relation.referencesen | 11. Zhang M.Q., Rong M.Z., Yu S.L., Wetzel B., Friedrich K. (2002). Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear, 253(9-10), 1086-1093. https://doi.org/10.1016/S0043-1648(02)00252-1. | |
| dc.relation.referencesen | 12. Bhavith K., Prashanth Pai M, Sudheer M, Ramachandra C G, Maruthi Prashanth B H, Kiran Kumar B. (2023). The Effect of Metal Filler on the Mechanical Performance of Epoxy Resin Composites. Engineering Proceedings, 59(1), 200. https://doi.org/10.3390/engproc2023059200 | |
| dc.relation.referencesen | 13. Monoranu M., Mitchell R.L., Kerrigan K., Fairclough J., Ghadbeigi H. (2022). The effect of particle reinforcements on chip formation and machining induced damage of modified epoxy carbon fibre reinforced polymers (CFRPs). Composites Part A: Applied Science and Manufacturing, 154, 106793. https://doi.org/10.1016/j.compositesa.2021.106793 | |
| dc.relation.referencesen | 14. Papageorgiou D., Terzopoulou Z., Fina A., Cuttica F., Papageorgiou G., Bikiaris D., Chrissafis K., Young R., Kinloch I. (2018). Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Composites Science and Technology, 156, 95-102. https://doi.org/10.1016/j.compscitech.2017.12.019 | |
| dc.relation.referencesen | 15. Zheng J., Liu Y., Wang Q., Cheng L., Zhang C., Zhang T., Shao J., Dai F. (2024). Mechanical properties and thermal characteristics of three nano-filler/silk fiber reinforced hybrid composites: A comparative study using a ductile epoxy resin matrix. Polymer Testing, 130, 108319. https://doi.org/10.1016/j.polymertesting.2023.108319 | |
| dc.relation.referencesen | 16. Dhiwar D., Verma S.K., Gupta N., Agnihotri P.K. (2024). Augmenting the fracture toughness and structural health monitoring capabilities in Kevlar/epoxy composites using carbon nanotubes. Engineering Fracture Mechanics, 297, 109877. https://doi.org/10.1016/j.engfracmech.2024.109877 | |
| dc.relation.referencesen | 17. Li Z., Qi X., Liu C., Fan B., Yang X. (2023). Particle size effect of PTFE on friction and wear properties of glass fiber reinforced epoxy resin composites. Wear, 532-533, 205104. https://doi.org/10.1016/j.wear.2023.205104 | |
| dc.relation.referencesen | 18. Kiran M.D., Lokesh Yadhav B R., Babbar A., Kumar R., Sharath Chandra H S, Shetty R.P., Sudeepa K B, Sampath Kumar L, Kaur R., Meshel Q. Alkahtani, Islam S., Kumar R. (2024). Tribological properties of CNT-filled epoxy-carbon fabric composites: Optimization and modelling by machine learning. Journal of Materials Research and Technology, 28, 2582-2601. https://doi.org/10.1016/j.jmrt.2023.12.175 | |
| dc.relation.referencesen | 19. Adak N.C., Lee G.-H., Tung H.T., Lim S., Lingappan N., Kang H.W., Lee W. (2023). Superior high-temperature mechanical and thermal performance of carbon fiber/epoxy composites by incorporating highly dispersed aramid nanofibers. Applied Materials Today, 35, 101956. https://doi.org/10.1016/j.apmt.2023.101956 | |
| dc.relation.referencesen | 20. Soni C., Patnaik P.K., Mishra S.K., Panda S.S., Rath K.C. (2023). Sisal fiber and groundnut shell particulate reinforced hybrid epoxy composites: A study on mechanical and tribological properties. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.11.041 | |
| dc.relation.referencesen | 21. Chen C., Xue Y., Li X., Wen Y., Liu J., Xue Z., Shi D., Zhou X., Xie X., Mai Y.-W. (2019). High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Composites Part A: Applied Science and Manufacturing, 118, 67-74. https://doi.org/10.1016/j.compositesa.2018.12.019 | |
| dc.relation.referencesen | 22. Wu Y., Fang R., Zhou Z., Cai F., Hu Y., Zhang X. (2024). Theoretical study on thermal conductivity of epoxy composites doped with boron nitride with multiple dimensions. Materials Today Communications, 38, 107972. https://doi.org/10.1016/j.mtcomm.2023.107972 | |
| dc.relation.referencesen | 23. Akçay S.B., Kocaman M., Çelebi M., Güler O., Varol T. (2024). Surface modification for improving interfacial, mechanical and thermal performance characteristics in epoxy composites: Electroless nickel enhancement of dendritic copper particle-reinforced epoxy. Surface and Coatings Technology, 478, 130417. https://doi.org/10.1016/j.surfcoat.2024.130417 | |
| dc.relation.referencesen | 24. Kucherenko A.N., Mankevych S.O., Kuznetsova M.Ya., Moravskyi V.S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140-145. https://doi.org/10.23939/ctas2020.02.140 | |
| dc.relation.referencesen | 25. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E., Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856 https://doi.org/10.3390/ma13122856 | |
| dc.relation.referencesen | 26. Kucherenko A., Nikitchuk O., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4(1), 191-197. https://doi.org/10.23939/ctas2021.01.191 | |
| dc.relation.referencesen | 27. WAXSFIT - Analysis of X-RAY diffraction curves. Available online: http://www2.ath.bielsko.pl/~mrabiej/waxsfit/sub/main_en/ (accessed on 04.12.2023). | |
| dc.relation.referencesen | 28. Tadayyon Gh., Zebarjad S.M., Sajjadi S.A. (2011). Effect of both nano-size alumina particles and severe deformation on polyethylene crystallinity index. Journal of Thermoplastic Composite Materials, 25(4), 479-490. DOI: 10.1177/0892705711415186 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2023.05.059 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2023.06.102 | |
| dc.relation.uri | https://doi.org/10.1016/j.compositesb.2021.109223 | |
| dc.relation.uri | https://doi.org/10.3390/engproc2023059088 | |
| dc.relation.uri | https://doi.org/10.1016/S0924-0136(02)00275-3 | |
| dc.relation.uri | https://doi.org/10.1177/0731684407079525 | |
| dc.relation.uri | https://doi.org/10.1016/0043-1648(95)90203-1 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2021.12.172 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2021.12.449 | |
| dc.relation.uri | https://doi.org/10.1016/S0043-1648(02)00252-1 | |
| dc.relation.uri | https://doi.org/10.3390/engproc2023059200 | |
| dc.relation.uri | https://doi.org/10.1016/j.compositesa.2021.106793 | |
| dc.relation.uri | https://doi.org/10.1016/j.compscitech.2017.12.019 | |
| dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2023.108319 | |
| dc.relation.uri | https://doi.org/10.1016/j.engfracmech.2024.109877 | |
| dc.relation.uri | https://doi.org/10.1016/j.wear.2023.205104 | |
| dc.relation.uri | https://doi.org/10.1016/j.jmrt.2023.12.175 | |
| dc.relation.uri | https://doi.org/10.1016/j.apmt.2023.101956 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2023.11.041 | |
| dc.relation.uri | https://doi.org/10.1016/j.compositesa.2018.12.019 | |
| dc.relation.uri | https://doi.org/10.1016/j.mtcomm.2023.107972 | |
| dc.relation.uri | https://doi.org/10.1016/j.surfcoat.2024.130417 | |
| dc.relation.uri | https://doi.org/10.23939/ctas2020.02.140 | |
| dc.relation.uri | https://doi.org/10.3390/ma13122856 | |
| dc.relation.uri | https://doi.org/10.23939/ctas2021.01.191 | |
| dc.relation.uri | http://www2.ath.bielsko.pl/~mrabiej/waxsfit/sub/main_en/ | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | композит | |
| dc.subject | епоксид | |
| dc.subject | поліамід | |
| dc.subject | металізація | |
| dc.subject | мідь | |
| dc.subject | composite | |
| dc.subject | epoxy | |
| dc.subject | polyamide | |
| dc.subject | metallization | |
| dc.subject | copper | |
| dc.title | Physico-mechanical properties of epoxy composites filled with metallized polyamide granule | |
| dc.title.alternative | Фізико-механічні властивості епоксидних композитів наповнених металізованими гранулами поліаміду | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1