Physico-mechanical properties of epoxy composites filled with metallized polyamide granule

dc.citation.epage230
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage221
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University in Košice
dc.contributor.authorКучеренко, А. М.
dc.contributor.authorДовгий, В. І.
dc.contributor.authorДулебова, Л.
dc.contributor.authorКузнецова, М. Я.
dc.contributor.authorМоравський, В. С.
dc.contributor.authorKucherenko, A. M.
dc.contributor.authorDovhyi, V. I.
dc.contributor.authorDulebova, L.
dc.contributor.authorKuznetsova, M. Ya.
dc.contributor.authorMoravskyi, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T08:00:01Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДосліджено фізико-механічні властивості епоксидних композитів, наповнених мідненими гранулами поліаміду. Фізико-механічні властивості оцінено за результатами дослідження на розтяг та ударну в’язкість. Показано, що в одержаних композитів високі міцнісні властивості, які зберігаються на рівні ненаповненої матриці. Встановлено, що наявність на поверхні гранул поліаміду мідної оболонки незначно впливає на зміну фізико-механічних властивостей епоксидних композитів. Зроблено спробу пояснити одержані результати з використанням значень міцності адгезійного шару, що формується між епоксидною матрицею і різними за природою поверхнями наповнювача.
dc.description.abstractThe physical and mechanical properties of epoxy composites filled with copper-plated polyamide granules were investigated. Physico-mechanical properties were evaluated based on the results of tensile and impact toughness studies. It is shown that the obtained composites have high strength properties, which are preserved at the level of the unfilled matrix. It was established that the presence of polyamide granules of a copper shell on the surface has little effect on the change in the physical and mechanical properties of epoxy composites. An attempt was made to explain the obtained results using the values of the strength of the adhesive layer formed between the epoxy matrix and the surface of the filler, which is different in nature.
dc.format.extent221-230
dc.format.pages10
dc.identifier.citationPhysico-mechanical properties of epoxy composites filled with metallized polyamide granule / A. M. Kucherenko, V. I. Dovhyi, L. Dulebova, M. Ya. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 221–230.
dc.identifier.citationenPhysico-mechanical properties of epoxy composites filled with metallized polyamide granule / A. M. Kucherenko, V. I. Dovhyi, L. Dulebova, M. Ya. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 221–230.
dc.identifier.doidoi.org/10.23939/ctas2024.01.221
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111750
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Jerold Samuel Chelladurai S., Arthanari R., Meera M.R. (2022). Epoxy-Based Composites. IntechOpen. doi: 10.5772/intechopen.97898
dc.relation.references2. Naveen Kumar G., Rajesh K., Rama Durga Rao M., Sai Bharath K.P., Javvadi Eswara Manikanta. (2023). A review on mechanical properties of hybrid polymer composites. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.05.059
dc.relation.references3. Jothi Arunachalam S., Saravanan R. (2023). Study on filler reinforcement in polymer matrix composites - A review. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.06.102
dc.relation.references4. Mechin P.-Y., Keryvin V., Grandidier J.-C. (2021). Effect of the nano-filler content on the compressive strength of continuous carbon fibre/epoxy matrix composites. Composites Part B: Engineering, 224, 109223. https://doi.org/10.1016/j.compositesb.2021.109223
dc.relation.references5. Ranjith K., Prithvi C., Rajesh Mathivanan N., Rakshith Gowda D.S. (2023). Experimental and Numerical Investigation on Damage Resistance Characteristics of Woven E-Glass/Epoxy Composite Laminates Subjected to Drop-Weight Impacts. Engineering Proceedings, 59(1), 88. https://doi.org/10.3390/engproc2023059088
dc.relation.references6. Chung S., Im Y., Jeong H., Nakagawa T. (2003). The effects of metal filler on the characteristics of casting resin for semi-metallic soft tools. J. Mater. Process. Technol., 134, 26-34. https://doi.org/10.1016/S0924-0136(02)00275-3
dc.relation.references7. Bhagyashekar M.S., Rao R.M.V.G.K. (2007). Effects of Material Test Parameters on the Wear Behavior of Particulate Filled Composites Part 2: Cu-Epoxy and Al-Epoxy Composites. J. Reinf. Plast. Compos., 26, 1769-1780. https://doi.org/10.1177/0731684407079525
dc.relation.references8. Durand J.M., Vardavoulias M., Jeandin M. (1995). Role of reinforcing ceramic particles in the wear behavior of polymer based model composites. Wear, 181-183, 833-839. https://doi.org/10.1016/0043-1648(95)90203-1
dc.relation.references9. Bharadwaja K., Sreeram srinivasa rao, Baburao T. (2022). Epoxy/SiO2 nanocomposite mechanical properties and tribological performance. Materials Today: Proceedings, 62(4), 1712-1716. https://doi.org/10.1016/j.matpr.2021.12.172
dc.relation.references10. Bharadwaja K., Sreeram Srinivasa Rao, Baburao T. (2022). Epoxy reinforced with nano TiO2 particles: An experimental investigation of mechanical & tribological behaviour. Materials Today: Proceedings, 62(4), 1817-1820, https://doi.org/10.1016/j.matpr.2021.12.449
dc.relation.references11. Zhang M.Q., Rong M.Z., Yu S.L., Wetzel B., Friedrich K. (2002). Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear, 253(9-10), 1086-1093. https://doi.org/10.1016/S0043-1648(02)00252-1.
dc.relation.references12. Bhavith K., Prashanth Pai M, Sudheer M, Ramachandra C G, Maruthi Prashanth B H, Kiran Kumar B. (2023). The Effect of Metal Filler on the Mechanical Performance of Epoxy Resin Composites. Engineering Proceedings, 59(1), 200. https://doi.org/10.3390/engproc2023059200
dc.relation.references13. Monoranu M., Mitchell R.L., Kerrigan K., Fairclough J., Ghadbeigi H. (2022). The effect of particle reinforcements on chip formation and machining induced damage of modified epoxy carbon fibre reinforced polymers (CFRPs). Composites Part A: Applied Science and Manufacturing, 154, 106793. https://doi.org/10.1016/j.compositesa.2021.106793
dc.relation.references14. Papageorgiou D., Terzopoulou Z., Fina A., Cuttica F., Papageorgiou G., Bikiaris D., Chrissafis K., Young R., Kinloch I. (2018). Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Composites Science and Technology, 156, 95-102. https://doi.org/10.1016/j.compscitech.2017.12.019
dc.relation.references15. Zheng J., Liu Y., Wang Q., Cheng L., Zhang C., Zhang T., Shao J., Dai F. (2024). Mechanical properties and thermal characteristics of three nano-filler/silk fiber reinforced hybrid composites: A comparative study using a ductile epoxy resin matrix. Polymer Testing, 130, 108319. https://doi.org/10.1016/j.polymertesting.2023.108319
dc.relation.references16. Dhiwar D., Verma S.K., Gupta N., Agnihotri P.K. (2024). Augmenting the fracture toughness and structural health monitoring capabilities in Kevlar/epoxy composites using carbon nanotubes. Engineering Fracture Mechanics, 297, 109877. https://doi.org/10.1016/j.engfracmech.2024.109877
dc.relation.references17. Li Z., Qi X., Liu C., Fan B., Yang X. (2023). Particle size effect of PTFE on friction and wear properties of glass fiber reinforced epoxy resin composites. Wear, 532-533, 205104. https://doi.org/10.1016/j.wear.2023.205104
dc.relation.references18. Kiran M.D., Lokesh Yadhav B R., Babbar A., Kumar R., Sharath Chandra H S, Shetty R.P., Sudeepa K B, Sampath Kumar L, Kaur R., Meshel Q. Alkahtani, Islam S., Kumar R. (2024). Tribological properties of CNT-filled epoxy-carbon fabric composites: Optimization and modelling by machine learning. Journal of Materials Research and Technology, 28, 2582-2601. https://doi.org/10.1016/j.jmrt.2023.12.175
dc.relation.references19. Adak N.C., Lee G.-H., Tung H.T., Lim S., Lingappan N., Kang H.W., Lee W. (2023). Superior high-temperature mechanical and thermal performance of carbon fiber/epoxy composites by incorporating highly dispersed aramid nanofibers. Applied Materials Today, 35, 101956. https://doi.org/10.1016/j.apmt.2023.101956
dc.relation.references20. Soni C., Patnaik P.K., Mishra S.K., Panda S.S., Rath K.C. (2023). Sisal fiber and groundnut shell particulate reinforced hybrid epoxy composites: A study on mechanical and tribological properties. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.11.041
dc.relation.references21. Chen C., Xue Y., Li X., Wen Y., Liu J., Xue Z., Shi D., Zhou X., Xie X., Mai Y.-W. (2019). High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Composites Part A: Applied Science and Manufacturing, 118, 67-74. https://doi.org/10.1016/j.compositesa.2018.12.019
dc.relation.references22. Wu Y., Fang R., Zhou Z., Cai F., Hu Y., Zhang X. (2024). Theoretical study on thermal conductivity of epoxy composites doped with boron nitride with multiple dimensions. Materials Today Communications, 38, 107972. https://doi.org/10.1016/j.mtcomm.2023.107972
dc.relation.references23. Akçay S.B., Kocaman M., Çelebi M., Güler O., Varol T. (2024). Surface modification for improving interfacial, mechanical and thermal performance characteristics in epoxy composites: Electroless nickel enhancement of dendritic copper particle-reinforced epoxy. Surface and Coatings Technology, 478, 130417. https://doi.org/10.1016/j.surfcoat.2024.130417
dc.relation.references24. Kucherenko A.N., Mankevych S.O., Kuznetsova M.Ya., Moravskyi V.S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140-145. https://doi.org/10.23939/ctas2020.02.140
dc.relation.references25. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E., Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856 https://doi.org/10.3390/ma13122856
dc.relation.references26. Kucherenko A., Nikitchuk O., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4(1), 191-197. https://doi.org/10.23939/ctas2021.01.191
dc.relation.references27. WAXSFIT - Analysis of X-RAY diffraction curves. Available online: http://www2.ath.bielsko.pl/~mrabiej/waxsfit/sub/main_en/ (accessed on 04.12.2023).
dc.relation.references28. Tadayyon Gh., Zebarjad S.M., Sajjadi S.A. (2011). Effect of both nano-size alumina particles and severe deformation on polyethylene crystallinity index. Journal of Thermoplastic Composite Materials, 25(4), 479-490. DOI: 10.1177/0892705711415186
dc.relation.referencesen1. Jerold Samuel Chelladurai S., Arthanari R., Meera M.R. (2022). Epoxy-Based Composites. IntechOpen. doi: 10.5772/intechopen.97898
dc.relation.referencesen2. Naveen Kumar G., Rajesh K., Rama Durga Rao M., Sai Bharath K.P., Javvadi Eswara Manikanta. (2023). A review on mechanical properties of hybrid polymer composites. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.05.059
dc.relation.referencesen3. Jothi Arunachalam S., Saravanan R. (2023). Study on filler reinforcement in polymer matrix composites - A review. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.06.102
dc.relation.referencesen4. Mechin P.-Y., Keryvin V., Grandidier J.-C. (2021). Effect of the nano-filler content on the compressive strength of continuous carbon fibre/epoxy matrix composites. Composites Part B: Engineering, 224, 109223. https://doi.org/10.1016/j.compositesb.2021.109223
dc.relation.referencesen5. Ranjith K., Prithvi C., Rajesh Mathivanan N., Rakshith Gowda D.S. (2023). Experimental and Numerical Investigation on Damage Resistance Characteristics of Woven E-Glass/Epoxy Composite Laminates Subjected to Drop-Weight Impacts. Engineering Proceedings, 59(1), 88. https://doi.org/10.3390/engproc2023059088
dc.relation.referencesen6. Chung S., Im Y., Jeong H., Nakagawa T. (2003). The effects of metal filler on the characteristics of casting resin for semi-metallic soft tools. J. Mater. Process. Technol., 134, 26-34. https://doi.org/10.1016/S0924-0136(02)00275-3
dc.relation.referencesen7. Bhagyashekar M.S., Rao R.M.V.G.K. (2007). Effects of Material Test Parameters on the Wear Behavior of Particulate Filled Composites Part 2: Cu-Epoxy and Al-Epoxy Composites. J. Reinf. Plast. Compos., 26, 1769-1780. https://doi.org/10.1177/0731684407079525
dc.relation.referencesen8. Durand J.M., Vardavoulias M., Jeandin M. (1995). Role of reinforcing ceramic particles in the wear behavior of polymer based model composites. Wear, 181-183, 833-839. https://doi.org/10.1016/0043-1648(95)90203-1
dc.relation.referencesen9. Bharadwaja K., Sreeram srinivasa rao, Baburao T. (2022). Epoxy/SiO2 nanocomposite mechanical properties and tribological performance. Materials Today: Proceedings, 62(4), 1712-1716. https://doi.org/10.1016/j.matpr.2021.12.172
dc.relation.referencesen10. Bharadwaja K., Sreeram Srinivasa Rao, Baburao T. (2022). Epoxy reinforced with nano TiO2 particles: An experimental investigation of mechanical & tribological behaviour. Materials Today: Proceedings, 62(4), 1817-1820, https://doi.org/10.1016/j.matpr.2021.12.449
dc.relation.referencesen11. Zhang M.Q., Rong M.Z., Yu S.L., Wetzel B., Friedrich K. (2002). Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear, 253(9-10), 1086-1093. https://doi.org/10.1016/S0043-1648(02)00252-1.
dc.relation.referencesen12. Bhavith K., Prashanth Pai M, Sudheer M, Ramachandra C G, Maruthi Prashanth B H, Kiran Kumar B. (2023). The Effect of Metal Filler on the Mechanical Performance of Epoxy Resin Composites. Engineering Proceedings, 59(1), 200. https://doi.org/10.3390/engproc2023059200
dc.relation.referencesen13. Monoranu M., Mitchell R.L., Kerrigan K., Fairclough J., Ghadbeigi H. (2022). The effect of particle reinforcements on chip formation and machining induced damage of modified epoxy carbon fibre reinforced polymers (CFRPs). Composites Part A: Applied Science and Manufacturing, 154, 106793. https://doi.org/10.1016/j.compositesa.2021.106793
dc.relation.referencesen14. Papageorgiou D., Terzopoulou Z., Fina A., Cuttica F., Papageorgiou G., Bikiaris D., Chrissafis K., Young R., Kinloch I. (2018). Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Composites Science and Technology, 156, 95-102. https://doi.org/10.1016/j.compscitech.2017.12.019
dc.relation.referencesen15. Zheng J., Liu Y., Wang Q., Cheng L., Zhang C., Zhang T., Shao J., Dai F. (2024). Mechanical properties and thermal characteristics of three nano-filler/silk fiber reinforced hybrid composites: A comparative study using a ductile epoxy resin matrix. Polymer Testing, 130, 108319. https://doi.org/10.1016/j.polymertesting.2023.108319
dc.relation.referencesen16. Dhiwar D., Verma S.K., Gupta N., Agnihotri P.K. (2024). Augmenting the fracture toughness and structural health monitoring capabilities in Kevlar/epoxy composites using carbon nanotubes. Engineering Fracture Mechanics, 297, 109877. https://doi.org/10.1016/j.engfracmech.2024.109877
dc.relation.referencesen17. Li Z., Qi X., Liu C., Fan B., Yang X. (2023). Particle size effect of PTFE on friction and wear properties of glass fiber reinforced epoxy resin composites. Wear, 532-533, 205104. https://doi.org/10.1016/j.wear.2023.205104
dc.relation.referencesen18. Kiran M.D., Lokesh Yadhav B R., Babbar A., Kumar R., Sharath Chandra H S, Shetty R.P., Sudeepa K B, Sampath Kumar L, Kaur R., Meshel Q. Alkahtani, Islam S., Kumar R. (2024). Tribological properties of CNT-filled epoxy-carbon fabric composites: Optimization and modelling by machine learning. Journal of Materials Research and Technology, 28, 2582-2601. https://doi.org/10.1016/j.jmrt.2023.12.175
dc.relation.referencesen19. Adak N.C., Lee G.-H., Tung H.T., Lim S., Lingappan N., Kang H.W., Lee W. (2023). Superior high-temperature mechanical and thermal performance of carbon fiber/epoxy composites by incorporating highly dispersed aramid nanofibers. Applied Materials Today, 35, 101956. https://doi.org/10.1016/j.apmt.2023.101956
dc.relation.referencesen20. Soni C., Patnaik P.K., Mishra S.K., Panda S.S., Rath K.C. (2023). Sisal fiber and groundnut shell particulate reinforced hybrid epoxy composites: A study on mechanical and tribological properties. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.11.041
dc.relation.referencesen21. Chen C., Xue Y., Li X., Wen Y., Liu J., Xue Z., Shi D., Zhou X., Xie X., Mai Y.-W. (2019). High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Composites Part A: Applied Science and Manufacturing, 118, 67-74. https://doi.org/10.1016/j.compositesa.2018.12.019
dc.relation.referencesen22. Wu Y., Fang R., Zhou Z., Cai F., Hu Y., Zhang X. (2024). Theoretical study on thermal conductivity of epoxy composites doped with boron nitride with multiple dimensions. Materials Today Communications, 38, 107972. https://doi.org/10.1016/j.mtcomm.2023.107972
dc.relation.referencesen23. Akçay S.B., Kocaman M., Çelebi M., Güler O., Varol T. (2024). Surface modification for improving interfacial, mechanical and thermal performance characteristics in epoxy composites: Electroless nickel enhancement of dendritic copper particle-reinforced epoxy. Surface and Coatings Technology, 478, 130417. https://doi.org/10.1016/j.surfcoat.2024.130417
dc.relation.referencesen24. Kucherenko A.N., Mankevych S.O., Kuznetsova M.Ya., Moravskyi V.S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140-145. https://doi.org/10.23939/ctas2020.02.140
dc.relation.referencesen25. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E., Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856 https://doi.org/10.3390/ma13122856
dc.relation.referencesen26. Kucherenko A., Nikitchuk O., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4(1), 191-197. https://doi.org/10.23939/ctas2021.01.191
dc.relation.referencesen27. WAXSFIT - Analysis of X-RAY diffraction curves. Available online: http://www2.ath.bielsko.pl/~mrabiej/waxsfit/sub/main_en/ (accessed on 04.12.2023).
dc.relation.referencesen28. Tadayyon Gh., Zebarjad S.M., Sajjadi S.A. (2011). Effect of both nano-size alumina particles and severe deformation on polyethylene crystallinity index. Journal of Thermoplastic Composite Materials, 25(4), 479-490. DOI: 10.1177/0892705711415186
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.05.059
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.06.102
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2021.109223
dc.relation.urihttps://doi.org/10.3390/engproc2023059088
dc.relation.urihttps://doi.org/10.1016/S0924-0136(02)00275-3
dc.relation.urihttps://doi.org/10.1177/0731684407079525
dc.relation.urihttps://doi.org/10.1016/0043-1648(95)90203-1
dc.relation.urihttps://doi.org/10.1016/j.matpr.2021.12.172
dc.relation.urihttps://doi.org/10.1016/j.matpr.2021.12.449
dc.relation.urihttps://doi.org/10.1016/S0043-1648(02)00252-1
dc.relation.urihttps://doi.org/10.3390/engproc2023059200
dc.relation.urihttps://doi.org/10.1016/j.compositesa.2021.106793
dc.relation.urihttps://doi.org/10.1016/j.compscitech.2017.12.019
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2023.108319
dc.relation.urihttps://doi.org/10.1016/j.engfracmech.2024.109877
dc.relation.urihttps://doi.org/10.1016/j.wear.2023.205104
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2023.12.175
dc.relation.urihttps://doi.org/10.1016/j.apmt.2023.101956
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.11.041
dc.relation.urihttps://doi.org/10.1016/j.compositesa.2018.12.019
dc.relation.urihttps://doi.org/10.1016/j.mtcomm.2023.107972
dc.relation.urihttps://doi.org/10.1016/j.surfcoat.2024.130417
dc.relation.urihttps://doi.org/10.23939/ctas2020.02.140
dc.relation.urihttps://doi.org/10.3390/ma13122856
dc.relation.urihttps://doi.org/10.23939/ctas2021.01.191
dc.relation.urihttp://www2.ath.bielsko.pl/~mrabiej/waxsfit/sub/main_en/
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectкомпозит
dc.subjectепоксид
dc.subjectполіамід
dc.subjectметалізація
dc.subjectмідь
dc.subjectcomposite
dc.subjectepoxy
dc.subjectpolyamide
dc.subjectmetallization
dc.subjectcopper
dc.titlePhysico-mechanical properties of epoxy composites filled with metallized polyamide granule
dc.title.alternativeФізико-механічні властивості епоксидних композитів наповнених металізованими гранулами поліаміду
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Kucherenko_A_M-Physico_mechanical_221-230.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Kucherenko_A_M-Physico_mechanical_221-230__COVER.png
Size:
500.99 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: