Development of an Algorithm and Software System for Facing Panels Accounting on Production Lines

dc.citation.epage95
dc.citation.issue2
dc.citation.spage89
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorIvanov, Yurii
dc.contributor.authorBilous, Petro
dc.contributor.authorBotvinnikov, Viacheslav
dc.contributor.authorHolovatyi, Maksym
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-19T09:44:32Z
dc.date.available2024-02-19T09:44:32Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThis paper aims to develop and implement an algorithm and an automated software system for the automatic accounting process of external facing panels during transportation on line conveyors. The method described in this paper is designed to simplify the process of production and accounting of wall-facing panels. This method can also serve as a model for implementing other manufacturers. The developed algorithm consists of the following steps: obtaining a video stream in real-time or from a file and its targeted processing and determining the number of moving objects of interest. The software accounting system created based on the developed algorithm analyzes the video data and stores all the necessary results and settings in the database. The software system can adapt to the accounting requirements of other types of similar products in other areas.
dc.format.extent89-95
dc.format.pages7
dc.identifier.citationDevelopment of an Algorithm and Software System for Facing Panels Accounting on Production Lines / Yurii Ivanov, Petro Bilous, Viacheslav Botvinnikov, Maksym Holovatyi // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 89–95.
dc.identifier.citationenDevelopment of an Algorithm and Software System for Facing Panels Accounting on Production Lines / Yurii Ivanov, Petro Bilous, Viacheslav Botvinnikov, Maksym Holovatyi // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 89–95.
dc.identifier.doidoi.org/10.23939/acps2023.02.089
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61335
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (8), 2023
dc.relation.referencesSharma A., Pathak J., Prakash M., Singh J. N., (2021). “Object Detection using OpenCV and Python”, 3rd Inter- national Conference on Advances in Computing, Commu- nication Control and Networking (ICAC3N), Greater Noida, India, 2021, pp. 501–505, DOI: 10.1109/ ICAC3N53548.2021.9725638.
dc.relation.referencesArchana K., Prasad K., (2022). “Object Detection Using Region-Conventional Neural Network (RCNN) and OpenCV”, International Journal of Distributed Artificial Intelligence (IJDAI), 14(2), 2022, pp. 1–9, DOI: 10.4018/ IJDAI.315277.
dc.relation.referencesPang, B., Nijkamp, E., Wu, Y. N., (2020). “Deep Learning With TensorFlow: A Review”, Journal of Educational and Behavioral Statistics, 45(2), pp. 227–248, DOI: 10.3102/ 1076998619872761.
dc.relation.referencesShallue, C. J., Vanderburg, A., (2018). “Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90”, The Astronomical Journal, Volume 155, Num- ber 2, pp. 94–117, DOI: 1 10.3847/1538-3881/aa9e09.
dc.relation.referencesChen D., Zheng P., Chen Z., Lai R., Luo W., Liu H., (2021). “Privacy-Preserving Hough Transform and Line Detection on Encrypted Cloud Images”, IEEE 20th International Conference on Trust, Security, and Privacy in Computing and Communications (TrustCom), Shen- yang, China, 2021, pp. 486–493, DOI: 10.1109/ TrustCom53373.2021.00078.
dc.relation.referencesMarichal-Hernández J.G., Oliva-García R., Gómez- Cárdenes Ó., Rodríguez-Méndez I., Rodríguez-Ramos J.M., (2021). “Inverse Multiscale Discrete Radon Transform by Filtered Backprojection”. Applied Sciences. 2021; 11(1):22, pp. 34–44, DOI: 10.3390 /app11010022.
dc.relation.referencesKulik S., Shtanko A., (2020). “Using convolutional neural networks for recognition of objects varied in appearance in computer vision for intellectual robots”, Procedia Com- puter Science, Volume 169, 2020, pp. 164–167, DOI: 10.1016/j.procs.2020.02.129.
dc.relation.referencesIvanov, Y., Sharov, B., Zalevskyi N., Kernytskyi, O., (2022). “Software System for End-Products Accounting in Bakery Production Lines Based on Distributed Video Streams Analy- sis”, Advances in Cyber-physical Systems 2022; Volume 7, Number 2, pp. 101–107, DOI: 10.23939/ acps2022.02.101.
dc.relation.referencesenSharma A., Pathak J., Prakash M., Singh J. N., (2021). "Object Detection using OpenCV and Python", 3rd Inter- national Conference on Advances in Computing, Commu- nication Control and Networking (ICAC3N), Greater Noida, India, 2021, pp. 501–505, DOI: 10.1109/ ICAC3N53548.2021.9725638.
dc.relation.referencesenArchana K., Prasad K., (2022). "Object Detection Using Region-Conventional Neural Network (RCNN) and OpenCV", International Journal of Distributed Artificial Intelligence (IJDAI), 14(2), 2022, pp. 1–9, DOI: 10.4018/ IJDAI.315277.
dc.relation.referencesenPang, B., Nijkamp, E., Wu, Y. N., (2020). "Deep Learning With TensorFlow: A Review", Journal of Educational and Behavioral Statistics, 45(2), pp. 227–248, DOI: 10.3102/ 1076998619872761.
dc.relation.referencesenShallue, C. J., Vanderburg, A., (2018). "Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90", The Astronomical Journal, Volume 155, Num- ber 2, pp. 94–117, DOI: 1 10.3847/1538-3881/aa9e09.
dc.relation.referencesenChen D., Zheng P., Chen Z., Lai R., Luo W., Liu H., (2021). "Privacy-Preserving Hough Transform and Line Detection on Encrypted Cloud Images", IEEE 20th International Conference on Trust, Security, and Privacy in Computing and Communications (TrustCom), Shen- yang, China, 2021, pp. 486–493, DOI: 10.1109/ TrustCom53373.2021.00078.
dc.relation.referencesenMarichal-Hernández J.G., Oliva-García R., Gómez- Cárdenes Ó., Rodríguez-Méndez I., Rodríguez-Ramos J.M., (2021). "Inverse Multiscale Discrete Radon Transform by Filtered Backprojection". Applied Sciences. 2021; 11(1):22, pp. 34–44, DOI: 10.3390 /app11010022.
dc.relation.referencesenKulik S., Shtanko A., (2020). "Using convolutional neural networks for recognition of objects varied in appearance in computer vision for intellectual robots", Procedia Com- puter Science, Volume 169, 2020, pp. 164–167, DOI: 10.1016/j.procs.2020.02.129.
dc.relation.referencesenIvanov, Y., Sharov, B., Zalevskyi N., Kernytskyi, O., (2022). "Software System for End-Products Accounting in Bakery Production Lines Based on Distributed Video Streams Analy- sis", Advances in Cyber-physical Systems 2022; Volume 7, Number 2, pp. 101–107, DOI: 10.23939/ acps2022.02.101.
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kharchenko M., Klushyn Yu., 2023
dc.subjectAlgorithm
dc.subjectcomputer vision
dc.subjectmoving object
dc.subjectproduction line
dc.subjectvideo stream
dc.titleDevelopment of an Algorithm and Software System for Facing Panels Accounting on Production Lines
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n2_Ivanov_Y-Development_of_an_Algorithm_89-95.pdf
Size:
389.88 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n2_Ivanov_Y-Development_of_an_Algorithm_89-95__COVER.png
Size:
547.16 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: