Modeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR”
| dc.citation.epage | 30 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 19 | |
| dc.citation.volume | 7 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Кравчук, В. С. | |
| dc.contributor.author | Вегера, П. І. | |
| dc.contributor.author | Хміль, Р. Є. | |
| dc.contributor.author | Kravchuk, Volodymyr | |
| dc.contributor.author | Vegera, Pavlo | |
| dc.contributor.author | Khmil, Roman | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-26T08:05:27Z | |
| dc.date.created | 2025-02-27 | |
| dc.date.issued | 2025-02-27 | |
| dc.description.abstract | Більшість сучасних будівель і споруд використовують залізобетонні елементи, які можуть зазнавати різноманітних пошкоджень під час експлуатації. Виникнення різноманітних пошкоджень призводить до небезпеки експлуатації будівель та споруд. У цьому дослідженні особливу увагу приділено аналізу залізобетонних балок із суцільними пошкодженнями поперечного перерізу балок за допомогою програмного комплексу LIRA-SAPR. Такі пошкодження охоплюють пошкодження захисного шару бетону та верхньої стисненої арматури, що мають велике практичне значення у майбутньому розрахунку оцінки залишкової несучої здатності та напружено-деформованого стану залізобетонних конструкцій. Моделювання залізобетонних елементів виконано методом скінченних елементів у програмному комплексі LIRA-SAPR. Результати дослідження містять аналіз напружень в залізобетонних балках без пошкоджень та з різними типами пошкоджень захисного шару бетону та верхнього стиснутого армування, а також порівняння максимальних напружень дослідних зразків із характеристичними значеннями міцності бетону та арматури. Аналіз результатів дослідження показав, що пошкодження захисного шару бетону по периметру перерізу балки призводить до істотного зниження несучої здатності балок. Це дослідження дає можливість виявити важливі закономірності, що стосуються впливу пошкоджень на міцність та деформаційну здатність конструкцій, а також точно оцінити напруження, які виникають в балці, залежно від параметрів пошкодження. Отримані результати мають велике практичне значення і можуть бути використані для подальших практичних досліджень із метою покращення методів оцінювання залишкової несучої здатності залізобетонних конструкцій, що допоможе знизити ризики руйнування таких елементів під час експлуатації. | |
| dc.description.abstract | Most modern buildings use reinforced concrete elements, which can sustain damage duringoperation, creating potential risks for their safe use. This article focuses on the analysis of reinforced concrete beams with cross-sectional damage using the LIRA-SAPR software suite. Special attention is given to the damage of the protective concrete layer and the top compressed reinforcement, which is crucial for assessing the residual load-bearing capacity and the stress-strain state of the structures. The modeling of reinforced concrete elements is performed using the finite element method. The obtained results have practical significance for further research and the improvement of methods for evaluating the residual load-bearing capacity of reinforced concrete structures, which will help reduce the risk of failure of such elements during operation. | |
| dc.format.extent | 19-30 | |
| dc.format.pages | 12 | |
| dc.identifier.citation | Kravchuk V. Modeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR” / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 19–30. | |
| dc.identifier.citationen | Kravchuk V. Modeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR” / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 19–30. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2025.01.019 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124481 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 1 (7), 2025 | |
| dc.relation.ispartof | Theory and Building Practice, 1 (7), 2025 | |
| dc.relation.references | Blikharskyy, Y., & Kopiika, N. (2022). Аnalysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035 | |
| dc.relation.references | Kravchuk, V., Vegera, P., & Khmil R. (2024). Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements. Theory and Building Practice, 6(2), 19-27. https://doi.org/10.23939/jtbp2024.02.019 | |
| dc.relation.references | Voskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074 | |
| dc.relation.references | Ibrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with FRP laminates. European Journal of Scientific Research, 30(4), 526-541. https://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates | |
| dc.relation.references | Tjitradi, D., Eliatun, E., & Taufik, S. (2017). 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14-23. DOI: 10.5923/j.mechanics.20170701.02 | |
| dc.relation.references | Hasan, K., Alam, M. M., Mahzuz, H. M. A., & Hasan, K. FE simulation of reinforced concrete beam using ansys for several patterns of shear reinforcement. Advances in Civil Engineering (ICACE 2020). https://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_ REINFORCEMENT | |
| dc.relation.references | Krasnitskyi, P., Lobodanov, M., & Blikharskyy, Z. (2024). Analysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68 https://doi.org/10.23939/jtbp2024.01.061 | |
| dc.relation.references | Lobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf | |
| dc.relation.references | Lobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Determination of the bearing capacity of reinforced concrete beams with damage under load. SCIENCE & CONSTRUCTION, 26(4), 26-32 https://doi.org/10.33644/scienceandconstruction.v26i4.3 | |
| dc.relation.references | Blikharskyy, Z. Z., Vegera, P. І., Shnal, T.M. (2018). Іnfluence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://science.lpnu.ua/sctp/all-volumes-and-issues/volume-888-2018-1/influence-defects-working-rebar-bearing-capacity | |
| dc.relation.references | Lobodanov, M., Vegera, P., Blikharskyy, Z., & Karpushyn.A. (2022). Theoretical analysis and experimental investigation of the defects in the compressed zone of the reinforced concrete elements. Theory and Building Practice, 4(1), 94-102. https://doi.org/10.23939/jtbp2022.01.094 | |
| dc.relation.references | Klymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65 | |
| dc.relation.references | Klymenko Y., Kos Z., Grynyova I., and Polianskyi K. (2021). Investigation of Residual Bearing Capacity of Inclined Sections of Damaged Reinforced Concrete Beams. Croatian Regional Development Journal, 1 (1), 14-26. https://doi.org/10.2478/crdj-2021-0002 | |
| dc.relation.references | Pavlikov A.M., Harkava O.V., Hasenko A.V., & Andriiets K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92 | |
| dc.relation.references | Kos, Z., Klymenko, Y., Karpiuk, I., & Grynyova, I.(2022). Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Appl. Sci., 12, 685. https://doi.org/10.3390/app12020685. | |
| dc.relation.references | Mykhalevskyi, N.A., Vegera, P.І., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf | |
| dc.relation.references | Deineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130 | |
| dc.relation.references | Barabash, M. (2018). Some aspects of modelling nonlinear behaviour of reinforced concrete. Strength of Materials and Theory of Structures, 100, 164-171. http://nbuv.gov.ua/UJRN/omts_2018_100_15 | |
| dc.relation.references | Gorodetsky, D., & Romashkina, M. (2023). Nonlinearity in LIRA-CAD. Retrieved from https://help.liraland.com/uk-ua/high-technology-innovations/nonlinearity-in-lira-sapr.html?sphrase_id=22531 | |
| dc.relation.references | Shakhmov, Z., & Shamil, A.(2022). Nonlinear calculation of beam reinforcement using the finite element method. Technobius, 2(1), 0011. https://doi.org/10.54355/tbus/2.1.2022.0011 | |
| dc.relation.references | Ministry of Development and Territories of Ukraine. (2020). Concrete and reinforced concrete structures. Basic provisions (DBN V.2.6-98:2009, with Amendment No. 1). | |
| dc.relation.references | https://e-construction.gov.ua/laws_detail/3200410998024438840?doc_type=2 | |
| dc.relation.references | Ministry of Regional Development of Ukraine. (2011). Buildings and structures. Concrete and reinforced concrete structures of heavy concrete. Design rules (DSTU B V.2.6-156:2010). https://dnaop.com/html/60736_2.html | |
| dc.relation.referencesen | Blikharskyy, Y., & Kopiika, N. (2022). Analysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035 | |
| dc.relation.referencesen | Kravchuk, V., Vegera, P., & Khmil R. (2024). Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements. Theory and Building Practice, 6(2), 19-27. https://doi.org/10.23939/jtbp2024.02.019 | |
| dc.relation.referencesen | Voskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074 | |
| dc.relation.referencesen | Ibrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with FRP laminates. European Journal of Scientific Research, 30(4), 526-541. https://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates | |
| dc.relation.referencesen | Tjitradi, D., Eliatun, E., & Taufik, S. (2017). 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14-23. DOI: 10.5923/j.mechanics.20170701.02 | |
| dc.relation.referencesen | Hasan, K., Alam, M. M., Mahzuz, H. M. A., & Hasan, K. FE simulation of reinforced concrete beam using ansys for several patterns of shear reinforcement. Advances in Civil Engineering (ICACE 2020). https://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_ REINFORCEMENT | |
| dc.relation.referencesen | Krasnitskyi, P., Lobodanov, M., & Blikharskyy, Z. (2024). Analysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68 https://doi.org/10.23939/jtbp2024.01.061 | |
| dc.relation.referencesen | Lobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf | |
| dc.relation.referencesen | Lobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Determination of the bearing capacity of reinforced concrete beams with damage under load. SCIENCE & CONSTRUCTION, 26(4), 26-32 https://doi.org/10.33644/scienceandconstruction.v26i4.3 | |
| dc.relation.referencesen | Blikharskyy, Z. Z., Vegera, P. I., Shnal, T.M. (2018). Influence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://science.lpnu.ua/sctp/all-volumes-and-issues/volume-888-2018-1/influence-defects-working-rebar-bearing-capacity | |
| dc.relation.referencesen | Lobodanov, M., Vegera, P., Blikharskyy, Z., & Karpushyn.A. (2022). Theoretical analysis and experimental investigation of the defects in the compressed zone of the reinforced concrete elements. Theory and Building Practice, 4(1), 94-102. https://doi.org/10.23939/jtbp2022.01.094 | |
| dc.relation.referencesen | Klymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65 | |
| dc.relation.referencesen | Klymenko Y., Kos Z., Grynyova I., and Polianskyi K. (2021). Investigation of Residual Bearing Capacity of Inclined Sections of Damaged Reinforced Concrete Beams. Croatian Regional Development Journal, 1 (1), 14-26. https://doi.org/10.2478/crdj-2021-0002 | |
| dc.relation.referencesen | Pavlikov A.M., Harkava O.V., Hasenko A.V., & Andriiets K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92 | |
| dc.relation.referencesen | Kos, Z., Klymenko, Y., Karpiuk, I., & Grynyova, I.(2022). Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Appl. Sci., 12, 685. https://doi.org/10.3390/app12020685. | |
| dc.relation.referencesen | Mykhalevskyi, N.A., Vegera, P.I., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf | |
| dc.relation.referencesen | Deineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130 | |
| dc.relation.referencesen | Barabash, M. (2018). Some aspects of modelling nonlinear behaviour of reinforced concrete. Strength of Materials and Theory of Structures, 100, 164-171. http://nbuv.gov.ua/UJRN/omts_2018_100_15 | |
| dc.relation.referencesen | Gorodetsky, D., & Romashkina, M. (2023). Nonlinearity in LIRA-CAD. Retrieved from https://help.liraland.com/uk-ua/high-technology-innovations/nonlinearity-in-lira-sapr.html?sphrase_id=22531 | |
| dc.relation.referencesen | Shakhmov, Z., & Shamil, A.(2022). Nonlinear calculation of beam reinforcement using the finite element method. Technobius, 2(1), 0011. https://doi.org/10.54355/tbus/2.1.2022.0011 | |
| dc.relation.referencesen | Ministry of Development and Territories of Ukraine. (2020). Concrete and reinforced concrete structures. Basic provisions (DBN V.2.6-98:2009, with Amendment No. 1). | |
| dc.relation.referencesen | https://e-construction.gov.ua/laws_detail/3200410998024438840?doc_type=2 | |
| dc.relation.referencesen | Ministry of Regional Development of Ukraine. (2011). Buildings and structures. Concrete and reinforced concrete structures of heavy concrete. Design rules (DSTU B V.2.6-156:2010). https://dnaop.com/html/60736_2.html | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2022.01.035 | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2024.02.019 | |
| dc.relation.uri | https://reposit.nupp.edu.ua/handle/PoltNTU/8074 | |
| dc.relation.uri | https://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates | |
| dc.relation.uri | https://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_ | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2024.01.061 | |
| dc.relation.uri | http://visnyk-odaba.org.ua/2021-82/82-5.pdf | |
| dc.relation.uri | https://doi.org/10.33644/scienceandconstruction.v26i4.3 | |
| dc.relation.uri | https://science.lpnu.ua/sctp/all-volumes-and-issues/volume-888-2018-1/influence-defects-working-rebar-bearing-capacity | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2022.01.094 | |
| dc.relation.uri | http://dx.doi.org/10.31650/2415-377X-2019-77-58-65 | |
| dc.relation.uri | https://doi.org/10.2478/crdj-2021-0002 | |
| dc.relation.uri | https://doi.org/10.31650/2415-377X-2019-77-84-92 | |
| dc.relation.uri | https://doi.org/10.3390/app12020685 | |
| dc.relation.uri | http://visnyk-odaba.org.ua/2023-06/6-6.pdf | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2024.01.130 | |
| dc.relation.uri | http://nbuv.gov.ua/UJRN/omts_2018_100_15 | |
| dc.relation.uri | https://help.liraland.com/uk-ua/high-technology-innovations/nonlinearity-in-lira-sapr.html?sphrase_id=22531 | |
| dc.relation.uri | https://doi.org/10.54355/tbus/2.1.2022.0011 | |
| dc.relation.uri | https://e-construction.gov.ua/laws_detail/3200410998024438840?doc_type=2 | |
| dc.relation.uri | https://dnaop.com/html/60736_2.html | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2025 | |
| dc.rights.holder | © Kravchuk V., Vegera P., Khmil R., 2025 | |
| dc.subject | пошкодження | |
| dc.subject | залізобетонна балка | |
| dc.subject | моделювання | |
| dc.subject | LIRA-SAPR | |
| dc.subject | напруження | |
| dc.subject | захисний шар | |
| dc.subject | damage | |
| dc.subject | reinforced concrete beam | |
| dc.subject | modeling | |
| dc.subject | LIRA-SAPR | |
| dc.subject | stress | |
| dc.subject | concrete cover | |
| dc.title | Modeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR” | |
| dc.title.alternative | Моделювання та аналіз впливу пошкодження захисного шару бетону та верхньої стисненої арматури залізобетонної балки в ПК “ЛІРА-САПР” | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1