Modeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR”

dc.citation.epage30
dc.citation.issue1
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage19
dc.citation.volume7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКравчук, В. С.
dc.contributor.authorВегера, П. І.
dc.contributor.authorХміль, Р. Є.
dc.contributor.authorKravchuk, Volodymyr
dc.contributor.authorVegera, Pavlo
dc.contributor.authorKhmil, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-26T08:05:27Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractБільшість сучасних будівель і споруд використовують залізобетонні елементи, які можуть зазнавати різноманітних пошкоджень під час експлуатації. Виникнення різноманітних пошкоджень призводить до небезпеки експлуатації будівель та споруд. У цьому дослідженні особливу увагу приділено аналізу залізобетонних балок із суцільними пошкодженнями поперечного перерізу балок за допомогою програмного комплексу LIRA-SAPR. Такі пошкодження охоплюють пошкодження захисного шару бетону та верхньої стисненої арматури, що мають велике практичне значення у майбутньому розрахунку оцінки залишкової несучої здатності та напружено-деформованого стану залізобетонних конструкцій. Моделювання залізобетонних елементів виконано методом скінченних елементів у програмному комплексі LIRA-SAPR. Результати дослідження містять аналіз напружень в залізобетонних балках без пошкоджень та з різними типами пошкоджень захисного шару бетону та верхнього стиснутого армування, а також порівняння максимальних напружень дослідних зразків із характеристичними значеннями міцності бетону та арматури. Аналіз результатів дослідження показав, що пошкодження захисного шару бетону по периметру перерізу балки призводить до істотного зниження несучої здатності балок. Це дослідження дає можливість виявити важливі закономірності, що стосуються впливу пошкоджень на міцність та деформаційну здатність конструкцій, а також точно оцінити напруження, які виникають в балці, залежно від параметрів пошкодження. Отримані результати мають велике практичне значення і можуть бути використані для подальших практичних досліджень із метою покращення методів оцінювання залишкової несучої здатності залізобетонних конструкцій, що допоможе знизити ризики руйнування таких елементів під час експлуатації.
dc.description.abstractMost modern buildings use reinforced concrete elements, which can sustain damage duringoperation, creating potential risks for their safe use. This article focuses on the analysis of reinforced concrete beams with cross-sectional damage using the LIRA-SAPR software suite. Special attention is given to the damage of the protective concrete layer and the top compressed reinforcement, which is crucial for assessing the residual load-bearing capacity and the stress-strain state of the structures. The modeling of reinforced concrete elements is performed using the finite element method. The obtained results have practical significance for further research and the improvement of methods for evaluating the residual load-bearing capacity of reinforced concrete structures, which will help reduce the risk of failure of such elements during operation.
dc.format.extent19-30
dc.format.pages12
dc.identifier.citationKravchuk V. Modeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR” / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 19–30.
dc.identifier.citationenKravchuk V. Modeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR” / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 19–30.
dc.identifier.doidoi.org/10.23939/jtbp2025.01.019
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124481
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 1 (7), 2025
dc.relation.ispartofTheory and Building Practice, 1 (7), 2025
dc.relation.referencesBlikharskyy, Y., & Kopiika, N. (2022). Аnalysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035
dc.relation.referencesKravchuk, V., Vegera, P., & Khmil R. (2024). Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements. Theory and Building Practice, 6(2), 19-27. https://doi.org/10.23939/jtbp2024.02.019
dc.relation.referencesVoskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074
dc.relation.referencesIbrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with FRP laminates. European Journal of Scientific Research, 30(4), 526-541. https://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates
dc.relation.referencesTjitradi, D., Eliatun, E., & Taufik, S. (2017). 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14-23. DOI: 10.5923/j.mechanics.20170701.02
dc.relation.referencesHasan, K., Alam, M. M., Mahzuz, H. M. A., & Hasan, K. FE simulation of reinforced concrete beam using ansys for several patterns of shear reinforcement. Advances in Civil Engineering (ICACE 2020). https://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_ REINFORCEMENT
dc.relation.referencesKrasnitskyi, P., Lobodanov, M., & Blikharskyy, Z. (2024). Analysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68 https://doi.org/10.23939/jtbp2024.01.061
dc.relation.referencesLobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf
dc.relation.referencesLobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Determination of the bearing capacity of reinforced concrete beams with damage under load. SCIENCE & CONSTRUCTION, 26(4), 26-32 https://doi.org/10.33644/scienceandconstruction.v26i4.3
dc.relation.referencesBlikharskyy, Z. Z., Vegera, P. І., Shnal, T.M. (2018). Іnfluence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://science.lpnu.ua/sctp/all-volumes-and-issues/volume-888-2018-1/influence-defects-working-rebar-bearing-capacity
dc.relation.referencesLobodanov, M., Vegera, P., Blikharskyy, Z., & Karpushyn.A. (2022). Theoretical analysis and experimental investigation of the defects in the compressed zone of the reinforced concrete elements. Theory and Building Practice, 4(1), 94-102. https://doi.org/10.23939/jtbp2022.01.094
dc.relation.referencesKlymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65
dc.relation.referencesKlymenko Y., Kos Z., Grynyova I., and Polianskyi K. (2021). Investigation of Residual Bearing Capacity of Inclined Sections of Damaged Reinforced Concrete Beams. Croatian Regional Development Journal, 1 (1), 14-26. https://doi.org/10.2478/crdj-2021-0002
dc.relation.referencesPavlikov A.M., Harkava O.V., Hasenko A.V., & Andriiets K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92
dc.relation.referencesKos, Z., Klymenko, Y., Karpiuk, I., & Grynyova, I.(2022). Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Appl. Sci., 12, 685. https://doi.org/10.3390/app12020685.
dc.relation.referencesMykhalevskyi, N.A., Vegera, P.І., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf
dc.relation.referencesDeineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130
dc.relation.referencesBarabash, M. (2018). Some aspects of modelling nonlinear behaviour of reinforced concrete. Strength of Materials and Theory of Structures, 100, 164-171. http://nbuv.gov.ua/UJRN/omts_2018_100_15
dc.relation.referencesGorodetsky, D., & Romashkina, M. (2023). Nonlinearity in LIRA-CAD. Retrieved from https://help.liraland.com/uk-ua/high-technology-innovations/nonlinearity-in-lira-sapr.html?sphrase_id=22531
dc.relation.referencesShakhmov, Z., & Shamil, A.(2022). Nonlinear calculation of beam reinforcement using the finite element method. Technobius, 2(1), 0011. https://doi.org/10.54355/tbus/2.1.2022.0011
dc.relation.referencesMinistry of Development and Territories of Ukraine. (2020). Concrete and reinforced concrete structures. Basic provisions (DBN V.2.6-98:2009, with Amendment No. 1).
dc.relation.referenceshttps://e-construction.gov.ua/laws_detail/3200410998024438840?doc_type=2
dc.relation.referencesMinistry of Regional Development of Ukraine. (2011). Buildings and structures. Concrete and reinforced concrete structures of heavy concrete. Design rules (DSTU B V.2.6-156:2010). https://dnaop.com/html/60736_2.html
dc.relation.referencesenBlikharskyy, Y., & Kopiika, N. (2022). Analysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035
dc.relation.referencesenKravchuk, V., Vegera, P., & Khmil R. (2024). Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements. Theory and Building Practice, 6(2), 19-27. https://doi.org/10.23939/jtbp2024.02.019
dc.relation.referencesenVoskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074
dc.relation.referencesenIbrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with FRP laminates. European Journal of Scientific Research, 30(4), 526-541. https://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates
dc.relation.referencesenTjitradi, D., Eliatun, E., & Taufik, S. (2017). 3D ANSYS numerical modeling of reinforced concrete beam behavior under different collapsed mechanisms. International Journal of Mechanics and Applications, 14-23. DOI: 10.5923/j.mechanics.20170701.02
dc.relation.referencesenHasan, K., Alam, M. M., Mahzuz, H. M. A., & Hasan, K. FE simulation of reinforced concrete beam using ansys for several patterns of shear reinforcement. Advances in Civil Engineering (ICACE 2020). https://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_ REINFORCEMENT
dc.relation.referencesenKrasnitskyi, P., Lobodanov, M., & Blikharskyy, Z. (2024). Analysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68 https://doi.org/10.23939/jtbp2024.01.061
dc.relation.referencesenLobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf
dc.relation.referencesenLobodanov, M., Vegera, P., & Blikharskyy, Z. (2021). Determination of the bearing capacity of reinforced concrete beams with damage under load. SCIENCE & CONSTRUCTION, 26(4), 26-32 https://doi.org/10.33644/scienceandconstruction.v26i4.3
dc.relation.referencesenBlikharskyy, Z. Z., Vegera, P. I., Shnal, T.M. (2018). Influence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://science.lpnu.ua/sctp/all-volumes-and-issues/volume-888-2018-1/influence-defects-working-rebar-bearing-capacity
dc.relation.referencesenLobodanov, M., Vegera, P., Blikharskyy, Z., & Karpushyn.A. (2022). Theoretical analysis and experimental investigation of the defects in the compressed zone of the reinforced concrete elements. Theory and Building Practice, 4(1), 94-102. https://doi.org/10.23939/jtbp2022.01.094
dc.relation.referencesenKlymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65
dc.relation.referencesenKlymenko Y., Kos Z., Grynyova I., and Polianskyi K. (2021). Investigation of Residual Bearing Capacity of Inclined Sections of Damaged Reinforced Concrete Beams. Croatian Regional Development Journal, 1 (1), 14-26. https://doi.org/10.2478/crdj-2021-0002
dc.relation.referencesenPavlikov A.M., Harkava O.V., Hasenko A.V., & Andriiets K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92
dc.relation.referencesenKos, Z., Klymenko, Y., Karpiuk, I., & Grynyova, I.(2022). Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Appl. Sci., 12, 685. https://doi.org/10.3390/app12020685.
dc.relation.referencesenMykhalevskyi, N.A., Vegera, P.I., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf
dc.relation.referencesenDeineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130
dc.relation.referencesenBarabash, M. (2018). Some aspects of modelling nonlinear behaviour of reinforced concrete. Strength of Materials and Theory of Structures, 100, 164-171. http://nbuv.gov.ua/UJRN/omts_2018_100_15
dc.relation.referencesenGorodetsky, D., & Romashkina, M. (2023). Nonlinearity in LIRA-CAD. Retrieved from https://help.liraland.com/uk-ua/high-technology-innovations/nonlinearity-in-lira-sapr.html?sphrase_id=22531
dc.relation.referencesenShakhmov, Z., & Shamil, A.(2022). Nonlinear calculation of beam reinforcement using the finite element method. Technobius, 2(1), 0011. https://doi.org/10.54355/tbus/2.1.2022.0011
dc.relation.referencesenMinistry of Development and Territories of Ukraine. (2020). Concrete and reinforced concrete structures. Basic provisions (DBN V.2.6-98:2009, with Amendment No. 1).
dc.relation.referencesenhttps://e-construction.gov.ua/laws_detail/3200410998024438840?doc_type=2
dc.relation.referencesenMinistry of Regional Development of Ukraine. (2011). Buildings and structures. Concrete and reinforced concrete structures of heavy concrete. Design rules (DSTU B V.2.6-156:2010). https://dnaop.com/html/60736_2.html
dc.relation.urihttps://doi.org/10.23939/jtbp2022.01.035
dc.relation.urihttps://doi.org/10.23939/jtbp2024.02.019
dc.relation.urihttps://reposit.nupp.edu.ua/handle/PoltNTU/8074
dc.relation.urihttps://www.researchgate.net/publication/242163873_Finite_Element_Modeling_of_Reinforced_Concrete_Beams_Strengthened_with_FRP_Laminates
dc.relation.urihttps://www.researchgate.net/publication/351514723_FE_SIMULATION_OF_REINFORCED_CONCRETE_BEAM_USING_ANSYS_FOR_SEVERAL_PATTERNS_OF_SHEAR_
dc.relation.urihttps://doi.org/10.23939/jtbp2024.01.061
dc.relation.urihttp://visnyk-odaba.org.ua/2021-82/82-5.pdf
dc.relation.urihttps://doi.org/10.33644/scienceandconstruction.v26i4.3
dc.relation.urihttps://science.lpnu.ua/sctp/all-volumes-and-issues/volume-888-2018-1/influence-defects-working-rebar-bearing-capacity
dc.relation.urihttps://doi.org/10.23939/jtbp2022.01.094
dc.relation.urihttp://dx.doi.org/10.31650/2415-377X-2019-77-58-65
dc.relation.urihttps://doi.org/10.2478/crdj-2021-0002
dc.relation.urihttps://doi.org/10.31650/2415-377X-2019-77-84-92
dc.relation.urihttps://doi.org/10.3390/app12020685
dc.relation.urihttp://visnyk-odaba.org.ua/2023-06/6-6.pdf
dc.relation.urihttps://doi.org/10.23939/jtbp2024.01.130
dc.relation.urihttp://nbuv.gov.ua/UJRN/omts_2018_100_15
dc.relation.urihttps://help.liraland.com/uk-ua/high-technology-innovations/nonlinearity-in-lira-sapr.html?sphrase_id=22531
dc.relation.urihttps://doi.org/10.54355/tbus/2.1.2022.0011
dc.relation.urihttps://e-construction.gov.ua/laws_detail/3200410998024438840?doc_type=2
dc.relation.urihttps://dnaop.com/html/60736_2.html
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Kravchuk V., Vegera P., Khmil R., 2025
dc.subjectпошкодження
dc.subjectзалізобетонна балка
dc.subjectмоделювання
dc.subjectLIRA-SAPR
dc.subjectнапруження
dc.subjectзахисний шар
dc.subjectdamage
dc.subjectreinforced concrete beam
dc.subjectmodeling
dc.subjectLIRA-SAPR
dc.subjectstress
dc.subjectconcrete cover
dc.titleModeling the impact of damage to the concrete cover and the compressed rebar of a reinforced concrete beam in “LIRA-SAPR”
dc.title.alternativeМоделювання та аналіз впливу пошкодження захисного шару бетону та верхньої стисненої арматури залізобетонної балки в ПК “ЛІРА-САПР”
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v7n1_Kravchuk_V-Modeling_the_impact_of_damage_19-30.pdf
Size:
673.58 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v7n1_Kravchuk_V-Modeling_the_impact_of_damage_19-30__COVER.png
Size:
453.12 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: