Statics of adsorption of anionic surfactants

dc.citation.epage200
dc.citation.issue4
dc.citation.spage196
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationAcademy of Jan Dlugosz in Czestochow
dc.contributor.authorSabadash, Vira
dc.contributor.authorKonovalov, Oleh
dc.contributor.authorNowik-Zając, Anna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-09T08:48:43Z
dc.date.available2023-05-09T08:48:43Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractThe paper presents the results of the study of the statics of adsorption of surface-active substances from model solutions by activated carbon and zeolite. The results of photometric determination of the concentration of anionic surfactants before and after adsorption are presented. The results of adsorption capacity calculations are presented. The experimental results using the program (Langmuir 1.03) were numerically calculated. Sorption isotherms of sodium dodecyl sulfate indicate the mechanism of monomolecular physical adsorption. A good convergence of experimental data and theoretical calculations were established, the coefficient of determination R2>0.9, the value of the Chebyshev criterion 9·10-4... 2·10-4, and the root mean square deviation equal to 0 were established.
dc.format.extent196-200
dc.format.pages5
dc.identifier.citationSabadash V. Statics of adsorption of anionic surfactants / Vira Sabadash, Oleh Konovalov, Anna Nowik-Zając // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 4. — P. 196–200.
dc.identifier.citationenSabadash V. Statics of adsorption of anionic surfactants / Vira Sabadash, Oleh Konovalov, Anna Nowik-Zając // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 4. — P. 196–200.
dc.identifier.doidoi.org/10.23939/ep2022.04.196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59050
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 4 (7), 2022
dc.relation.referencesAmirianshoja, T., Junin, R., Idris, A. K., & Rahmani, O. (2013).
dc.relation.referencesA comparative study of surfactant adsorption by clay
dc.relation.referencesminerals. Journal of Petroleum Science and Engineering, 101, 21–27. doi: https://doi.org/10.1016/j.petrol.2012.10.002
dc.relation.referencesLiu, Z., Zhao, G., Brewer, M., Lv, Q., & Sudhölter, E. J. (2021).
dc.relation.referencesComprehensive review the surfactant adsorption he mineral
dc.relation.referencessurfaces in chemical enhanced oil recovery. Advances in
dc.relation.referencesColloid and Interface Science, 294, 102467. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.cis.2021.102467
dc.relation.referencesPeng, M., Duignan, T. T., & Nguyen, A. V. (2020).
dc.relation.referencesQuantifying the counterion-specific effect he surfactant
dc.relation.referencesadsorption using modeling, simulation, and
dc.relation.referencesexperiments. Langmuir, 36(43), 13012–13022. doi:
dc.relation.referenceshttps://doi.org/10.1021/acs.langmuir.0c02403
dc.relation.referencesSabadash, V., Gumnitsky, J., & Hertsyk, T. (2018). Thermodynamic
dc.relation.referencesstudies on the adsorption behavior of ammonium on zeolite.
dc.relation.referencesProceedings of the 8th International Youth Science Forum
dc.relation.references“Litteris et Artibus”, 22–24 November, 2018, Lviv: Lviv
dc.relation.referencesPolytechnic National University, 2018, pp. 190–193. doi:
dc.relation.referenceshttps://doi.org/10.23939/lea2018.01.190
dc.relation.referencesSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I. (2018).
dc.relation.referencesThermodynamics of (NH 4 + ) cation adsorption under static
dc.relation.referencesconditions. Chemistry & Chemical Technology, 12(2), 143-146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation
dc.relation.referencesof the process of ammonium ion adsorption by nature and
dc.relation.referencessynthetic sorbents by methods of multidimensional cluster
dc.relation.referencesanalysis. Environmental Problems, 5(2), 113–118. doi:
dc.relation.referenceshttps://doi.org/10.23939/ep2020.02.113
dc.relation.referencesSomasundaran, P., Healy, T.W., & Fuerstenau, D.W. (1964).
dc.relation.referencesSurfactant adsorption at the solid-liquid interface – dependency
dc.relation.referencesof mechanism he chain length. The Journal of Physical
dc.relation.referencesChemistry, 68(12), 3562–3566. doi: https://doi.org/10.1021/j100794a021
dc.relation.referencesSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A.
dc.relation.references(2019). Application of zeolitesin organic waste composting: A
dc.relation.referencesreview. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesYekeen, N., Manan, M. A., Idris, A. K., & Samin, A. M. (2017).
dc.relation.referencesInfluence of surfactant and electrolyte concentrations he
dc.relation.referencessurfactant Adsorption and foaming characteristics. Journal
dc.relation.referencesof Petroleum Science and Engineering, 149, 612–622. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.petrol.2016.11.018
dc.relation.referencesYekeen, N., Padmanabhan, E., Idris, A. K., & Ibad, S. M.
dc.relation.references(2019). Surfactant adsorption behaviours onto shale from
dc.relation.referencesMalaysian formations:Influence ofsilicon dioxide nanoparticles,
dc.relation.referencessurfactant type, temperature, salinity and shale lithology.
dc.relation.referencesJournal of Petroleum Science and Engineering, 179, 841–854. doi: https://doi.org/10.1016/j.petrol.2019.04.096
dc.relation.referencesenAmirianshoja, T., Junin, R., Idris, A. K., & Rahmani, O. (2013).
dc.relation.referencesenA comparative study of surfactant adsorption by clay
dc.relation.referencesenminerals. Journal of Petroleum Science and Engineering, 101, 21–27. doi: https://doi.org/10.1016/j.petrol.2012.10.002
dc.relation.referencesenLiu, Z., Zhao, G., Brewer, M., Lv, Q., & Sudhölter, E. J. (2021).
dc.relation.referencesenComprehensive review the surfactant adsorption he mineral
dc.relation.referencesensurfaces in chemical enhanced oil recovery. Advances in
dc.relation.referencesenColloid and Interface Science, 294, 102467. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.cis.2021.102467
dc.relation.referencesenPeng, M., Duignan, T. T., & Nguyen, A. V. (2020).
dc.relation.referencesenQuantifying the counterion-specific effect he surfactant
dc.relation.referencesenadsorption using modeling, simulation, and
dc.relation.referencesenexperiments. Langmuir, 36(43), 13012–13022. doi:
dc.relation.referencesenhttps://doi.org/10.1021/acs.langmuir.0c02403
dc.relation.referencesenSabadash, V., Gumnitsky, J., & Hertsyk, T. (2018). Thermodynamic
dc.relation.referencesenstudies on the adsorption behavior of ammonium on zeolite.
dc.relation.referencesenProceedings of the 8th International Youth Science Forum
dc.relation.referencesen"Litteris et Artibus", 22–24 November, 2018, Lviv: Lviv
dc.relation.referencesenPolytechnic National University, 2018, pp. 190–193. doi:
dc.relation.referencesenhttps://doi.org/10.23939/lea2018.01.190
dc.relation.referencesenSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I. (2018).
dc.relation.referencesenThermodynamics of (NH 4 + ) cation adsorption under static
dc.relation.referencesenconditions. Chemistry & Chemical Technology, 12(2), 143-146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesenSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation
dc.relation.referencesenof the process of ammonium ion adsorption by nature and
dc.relation.referencesensynthetic sorbents by methods of multidimensional cluster
dc.relation.referencesenanalysis. Environmental Problems, 5(2), 113–118. doi:
dc.relation.referencesenhttps://doi.org/10.23939/ep2020.02.113
dc.relation.referencesenSomasundaran, P., Healy, T.W., & Fuerstenau, D.W. (1964).
dc.relation.referencesenSurfactant adsorption at the solid-liquid interface – dependency
dc.relation.referencesenof mechanism he chain length. The Journal of Physical
dc.relation.referencesenChemistry, 68(12), 3562–3566. doi: https://doi.org/10.1021/j100794a021
dc.relation.referencesenSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A.
dc.relation.referencesen(2019). Application of zeolitesin organic waste composting: A
dc.relation.referencesenreview. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesenYekeen, N., Manan, M. A., Idris, A. K., & Samin, A. M. (2017).
dc.relation.referencesenInfluence of surfactant and electrolyte concentrations he
dc.relation.referencesensurfactant Adsorption and foaming characteristics. Journal
dc.relation.referencesenof Petroleum Science and Engineering, 149, 612–622. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.petrol.2016.11.018
dc.relation.referencesenYekeen, N., Padmanabhan, E., Idris, A. K., & Ibad, S. M.
dc.relation.referencesen(2019). Surfactant adsorption behaviours onto shale from
dc.relation.referencesenMalaysian formations:Influence ofsilicon dioxide nanoparticles,
dc.relation.referencesensurfactant type, temperature, salinity and shale lithology.
dc.relation.referencesenJournal of Petroleum Science and Engineering, 179, 841–854. doi: https://doi.org/10.1016/j.petrol.2019.04.096
dc.relation.urihttps://doi.org/10.1016/j.petrol.2012.10.002
dc.relation.urihttps://doi.org/10.1016/j.cis.2021.102467
dc.relation.urihttps://doi.org/10.1021/acs.langmuir.0c02403
dc.relation.urihttps://doi.org/10.23939/lea2018.01.190
dc.relation.urihttps://doi.org/10.23939/chcht12.02.143
dc.relation.urihttps://doi.org/10.23939/ep2020.02.113
dc.relation.urihttps://doi.org/10.1021/j100794a021
dc.relation.urihttps://doi.org/10.1016/j.bcab.2019.101396
dc.relation.urihttps://doi.org/10.1016/j.petrol.2016.11.018
dc.relation.urihttps://doi.org/10.1016/j.petrol.2019.04.096
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Sabadash V., Konovalov O., Nowik-Zając A., 2022
dc.subjectadsorption
dc.subjectactivated carbon
dc.subjectzeolite
dc.subjectwastewater
dc.subjectsurfactant
dc.subjectsodium dodecyl sulfate
dc.titleStatics of adsorption of anionic surfactants
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v7n4_Sabadash_V-Statics_of_adsorption_196-200.pdf
Size:
260.11 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v7n4_Sabadash_V-Statics_of_adsorption_196-200__COVER.png
Size:
1.08 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: