Comparative assessment of renewable sources for critical facilities of decentralized supply
dc.citation.epage | 16 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
dc.citation.spage | 10 | |
dc.contributor.affiliation | National Joint Stock Company “Naftogaz of Ukraine” | |
dc.contributor.affiliation | Pukhov Institute for Modelling in Energy Engineering | |
dc.contributor.affiliation | Lviv State University of Life Safety | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Karpenko, Vasily | |
dc.contributor.author | Starodub, Yuriy | |
dc.contributor.author | Rudyk, Yuri | |
dc.contributor.author | Kuts, Viktor | |
dc.contributor.author | Zdeb, Volodymyr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-04-03T07:16:40Z | |
dc.date.available | 2024-04-03T07:16:40Z | |
dc.date.created | 2023-03-01 | |
dc.date.issued | 2023-03-01 | |
dc.description.abstract | The concept of energy supply is widely discussed, but there is no consensus on ways of its provision. In the current research, we have provided an analysis of available combinations of renewable sources for decentralized energy supply. It is important for critical facilities on territorial society and district levels. The article considers the safety of the technical component of a complex organizational and technical system by studying the functional relationship between the parameters: temperature, time, active power, hydrogen participation, etc. The idea of the work is to evaluate the ratios of generating capacities of different types of renewable sources in complex systems and select highly efficient technologies and energy means for decentralized energy supply. | |
dc.format.extent | 10-16 | |
dc.format.pages | 7 | |
dc.identifier.citation | Comparative assessment of renewable sources for critical facilities of decentralized supply / Vasily Karpenko, Yuriy Starodub, Yuri Rudyk, Viktor Kuts, Volodymyr Zdeb // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 4. — P. 10–16. | |
dc.identifier.citationen | Comparative assessment of renewable sources for critical facilities of decentralized supply / Vasily Karpenko, Yuriy Starodub, Yuri Rudyk, Viktor Kuts, Volodymyr Zdeb // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 4. — P. 10–16. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2023.04.010 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61625 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вимірювальна техніка та метрологія, 4 (84), 2023 | |
dc.relation.ispartof | Measuring Equipment and Metrology, 4 (84), 2023 | |
dc.relation.references | [1] Hickmann, T., Widerberg, O., Lederer, M., Pattberg, P. (2021). The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking. International Review of Administrative Sciences, 87(1), 21–38. https://www.un.org›conferences›energy2021 | |
dc.relation.references | [2] IRENA (2022), World Energy Transitions Outlook 2022: 1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. Available for download: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook2022#page-1 | |
dc.relation.references | [3] Borys Pokhodenko (2023). Review and comparative analysis of energy security concepts of the European Union and Ukraine. The Journal of V. N. Karazin Kharkiv National University. Series: International Relations. Economics. Country Studies. Tourism, (17), 56–79. https://doi.org/10.26565/2310-9513-2023-17-06 . | |
dc.relation.references | [4] Bert Kruyt, D. P. van Vuuren, H. J. M. de Vries, H. Groenenberg, Indicators for energy security, Energy Policy, Vol. 37, Iss. 6, 2009, 2166–2181, https://doi.org/10.1016/j.enpol.2009.02.006. | |
dc.relation.references | [5] Richard Holden, Dimitri V. Val, Roland Burkhard, Sarah Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013 | |
dc.relation.references | [6] Fatma S. Hafez, Bahaaeddin Sa'di, M. Safa-Gamal, Y.H. Taufiq-Yap, Moath Alrifaey, Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, Saad Mekhilef, Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research, Energy Strategy Reviews, Vol. 45, 2023, 101013. https://doi.org/10.1016/j.esr.2022.101013 | |
dc.relation.references | [7] C. Zhang, C. Cui, Y. Zhang, J. Yuan, Y. Luo, W. Gang, A review of renewable energy assessment methods in green building and green neighborhood rating systems, Energy Build, 195 (2019) 68–81. https://doi.org/10.1016/j.enbuild.2019.04.040 | |
dc.relation.references | [8] Ranganathan R et al. (2023). A comparative study of renewable energy sources for power generation in rural areas ICSERET-2023, E3S Web of Conferences 387, 05011. https://doi.org/10.1051/e3sconf/202338705011 | |
dc.relation.references | [9] Ghania et al.: ΑReliability Study of Renewable Energy Resources and their Integration with Utility Grids Engineering, Technology & Applied Science Research, Vol. 12, No. 5, 2022, 9078–9086. https://doi.org/10.48084/etasr.5090 | |
dc.relation.references | [10] Fenerich F. C. et al. Energy efficiency in industrial environments: an updated review and a new research agenda, Revista Gestão e Secretariado (GeSec), São Paulo, SP, Vol. 14, No. 3, 2023, 3319–3347. http://doi.org/10.7769/gesec.v14i3.1802 | |
dc.relation.references | [11] Rehak D., Markuci J., Hromada M., Barcova K. Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection, Vol. 14, 2016, 3–17. https://doi.org/10.1016/j.ijcip.2016.06.002 . | |
dc.relation.references | [12] WUTMARC HYDROGEN STATIONS. URL: https://h2.wutmarc.ua | |
dc.relation.references | [13] Ukraine and the EU concluded a strategic partnership in the fields of green hydrogen and biogas. URL: https://ecopolitic.com.ua/ua/news/ukraina-ta-ies-uklali-strategichnepartnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/ | |
dc.relation.references | [14] Naftogaz signs green hydrogen “H2EU+Store” MOU on the transport of hydrogen produced in Ukraine to Germany. URL: https://www.naftogaz.com/news/green-hydrogenukraine-germany | |
dc.relation.references | [15] Choi, Y. Renewable Energy Systems: Optimal Planning and Design. Appl. Sci. 2023, 13, 3986. https://doi.org/10.3390/app13063986 | |
dc.relation.references | [16] Ukraine’s first green hydrogen plant to be built in Lviv region. URL: https://zaxid.net/pershiy_zeleniy_n1525661 | |
dc.relation.references | [17] Replace-gas-in-Ukrainian-GTS-with-green-hydrogen. URL: http://surl.li/nsehr | |
dc.relation.references | [18] Merten, F., Scholz, A., Krüger, C., Heck, S., Girard, Y., Mecke, M., & Goerge, M. (2020). Bewertung der Vorund Nachteile von Wasserstoffimporten im Vergleich zur heimischen Produktion, Studie für den Landesverband Erneuerbare Energien NRW e. V., Wuppertal Institut & DIW Econ. https://doi.org/10.48506/opus-7948 | |
dc.relation.references | [19] Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydrogen. Nature Energy, 4 (3), 216–222. https://doi.org/10.1038/s41560-019-0326-1 | |
dc.relation.references | [20] G. Golub, M. Tregub, A. Holubenko, V. Chuba, M. Tereshchuk, Determining of the influence of reactor parameters on the uniformity of mixing substrate components. Eastern-European Journal of Enterprise Technologies, 2020, 6(7–108), 60–70 http://journals.uran.ua/eejet/article/view/217159 | |
dc.relation.references | [21] V. Zubenko, O. Epik, V. Antonenko. Development and optimization of fast ablative pyrolysis technology in Ukraine. Energetika, 2018, T. 64. No. 1, 1–10. https://kriger.com.ua/en/projects/ | |
dc.relation.references | [22] L. S. Chervinsky, “The ways and effects of ultraviolet radiation on the human and animal body”, Proc. SPIE 11363, Tissue Optics and Photonics, 113630I (2 April 2020). DOI: 10.1117/12.2552719. https://www.scopus.com/record/display.uri?eid=2-s2.0-85087085997&origin=resultslist&sort=plf-fwww.altek.ua | |
dc.relation.references | [23] Y. V. Tascheiev, S. V. Voitko, O. O. Trofimenko, O. O. Repkin, T. S. Kudrya. Global trends in the development of hydrogen technologies in industry. BusinessInform, 2020. No. 8, 103–114. https://doi.org/10.32983/2222-4459-2020-8-103-114 | |
dc.relation.references | [24] V. M. Karpenko, Yu. P. Starodub. Research of geothermal energy parameters in deep wells JGD. 2017; Vol. 1(22) 2017, No. 1(22) 2017, 85–97. https://doi.org/10.23939/jgd2017.01.085 | |
dc.relation.references | [25] T. G. Karayiannis, et. al. (2022), “Energy availability from deep geothermal wells using coaxial heat exchangers”. 19th International Conference on Sustainable Energy Technologies; 16 Aug 2022; Istanbul, Turkey; Sustainable Energy Technologies, 1–10. URL: http://bura.brunel.ac.uk/handle/2438/25108 | |
dc.relation.references | [26] T. Kujawa, T. Nowak, W. Stachel, Aleksander. (2006). Utilization of existing deep geological wells for acquisition of geothermal energy. Energy, 31, 650–664. https://doi.org/10.1016/j.energy.2005.05.002 . | |
dc.relation.references | [27] A. Baroutaji, T. Wiberforce, M. Ramadan, A. Ghani Olabi. A comprehensive investigation of hydrogen and fuel technology in the aviation and aerospace sectors. Renewable and Sustainable Energy Reviews, Vol. 106, May 2019, 31– 40. DOI: 10.1016/j.rser.2019.02.022 | |
dc.relation.references | [28] V. Karpenko, Yu. Starodub, A. Havrys. Computer Modeling in the Application to Geothermal Engineering. – Advances in Civil Engineering, Vol. 2021, Article ID 6619991, 23 p., 2021. https://doi.org/10.1155/2021/ 6619991 | |
dc.relation.references | [29] A.-J. Perea-Moreno, Q. Hernandez-Escobedo, The Sustainable City: Advances in Renewable Energy and Energy Saving Systems. Energies 2021, 14, 8382. https://doi.org/10.3390/en14248382 | |
dc.relation.references | [30] P. Gasser, P. Lustenberger, M. Cinelli, W. Kim, M. Spada, P. Burgherr, S. Hirschberg, B. Stojadinovic, T. Sun (2019): A review on resilience assessment of energy systems, sustainable and resilient infrastructure to link to this article. https://doi.org/10.1080/23789689.2019.1610600 | |
dc.relation.references | [31] Y. Starodub, V. Karpenko, A. Havrys, and D. Behen, “Development of the methodology of energy and environmental safety of Ukraine based on own geothermic”, GJ, Vol. 45, No. 4, Aug. 2023. DOI: https://doi.org/10.24028/gj.v45i4.286289 | |
dc.relation.references | [32] R. Holden, D. Val, R. Burkhard, S. Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013 | |
dc.relation.referencesen | [1] Hickmann, T., Widerberg, O., Lederer, M., Pattberg, P. (2021). The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking. International Review of Administrative Sciences, 87(1), 21–38. https://www.un.org›conferences›energy2021 | |
dc.relation.referencesen | [2] IRENA (2022), World Energy Transitions Outlook 2022: 1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. Available for download: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook2022#page-1 | |
dc.relation.referencesen | [3] Borys Pokhodenko (2023). Review and comparative analysis of energy security concepts of the European Union and Ukraine. The Journal of V. N. Karazin Kharkiv National University. Series: International Relations. Economics. Country Studies. Tourism, (17), 56–79. https://doi.org/10.26565/2310-9513-2023-17-06 . | |
dc.relation.referencesen | [4] Bert Kruyt, D. P. van Vuuren, H. J. M. de Vries, H. Groenenberg, Indicators for energy security, Energy Policy, Vol. 37, Iss. 6, 2009, 2166–2181, https://doi.org/10.1016/j.enpol.2009.02.006. | |
dc.relation.referencesen | [5] Richard Holden, Dimitri V. Val, Roland Burkhard, Sarah Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013 | |
dc.relation.referencesen | [6] Fatma S. Hafez, Bahaaeddin Sa'di, M. Safa-Gamal, Y.H. Taufiq-Yap, Moath Alrifaey, Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, Saad Mekhilef, Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research, Energy Strategy Reviews, Vol. 45, 2023, 101013. https://doi.org/10.1016/j.esr.2022.101013 | |
dc.relation.referencesen | [7] C. Zhang, C. Cui, Y. Zhang, J. Yuan, Y. Luo, W. Gang, A review of renewable energy assessment methods in green building and green neighborhood rating systems, Energy Build, 195 (2019) 68–81. https://doi.org/10.1016/j.enbuild.2019.04.040 | |
dc.relation.referencesen | [8] Ranganathan R et al. (2023). A comparative study of renewable energy sources for power generation in rural areas ICSERET-2023, E3S Web of Conferences 387, 05011. https://doi.org/10.1051/e3sconf/202338705011 | |
dc.relation.referencesen | [9] Ghania et al., AReliability Study of Renewable Energy Resources and their Integration with Utility Grids Engineering, Technology & Applied Science Research, Vol. 12, No. 5, 2022, 9078–9086. https://doi.org/10.48084/etasr.5090 | |
dc.relation.referencesen | [10] Fenerich F. C. et al. Energy efficiency in industrial environments: an updated review and a new research agenda, Revista Gestão e Secretariado (GeSec), São Paulo, SP, Vol. 14, No. 3, 2023, 3319–3347. http://doi.org/10.7769/gesec.v14i3.1802 | |
dc.relation.referencesen | [11] Rehak D., Markuci J., Hromada M., Barcova K. Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection, Vol. 14, 2016, 3–17. https://doi.org/10.1016/j.ijcip.2016.06.002 . | |
dc.relation.referencesen | [12] WUTMARC HYDROGEN STATIONS. URL: https://h2.wutmarc.ua | |
dc.relation.referencesen | [13] Ukraine and the EU concluded a strategic partnership in the fields of green hydrogen and biogas. URL: https://ecopolitic.com.ua/ua/news/ukraina-ta-ies-uklali-strategichnepartnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/ | |
dc.relation.referencesen | [14] Naftogaz signs green hydrogen "H2EU+Store" MOU on the transport of hydrogen produced in Ukraine to Germany. URL: https://www.naftogaz.com/news/green-hydrogenukraine-germany | |
dc.relation.referencesen | [15] Choi, Y. Renewable Energy Systems: Optimal Planning and Design. Appl. Sci. 2023, 13, 3986. https://doi.org/10.3390/app13063986 | |
dc.relation.referencesen | [16] Ukraine’s first green hydrogen plant to be built in Lviv region. URL: https://zaxid.net/pershiy_zeleniy_n1525661 | |
dc.relation.referencesen | [17] Replace-gas-in-Ukrainian-GTS-with-green-hydrogen. URL: http://surl.li/nsehr | |
dc.relation.referencesen | [18] Merten, F., Scholz, A., Krüger, C., Heck, S., Girard, Y., Mecke, M., & Goerge, M. (2020). Bewertung der Vorund Nachteile von Wasserstoffimporten im Vergleich zur heimischen Produktion, Studie für den Landesverband Erneuerbare Energien NRW e. V., Wuppertal Institut & DIW Econ. https://doi.org/10.48506/opus-7948 | |
dc.relation.referencesen | [19] Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydrogen. Nature Energy, 4 (3), 216–222. https://doi.org/10.1038/s41560-019-0326-1 | |
dc.relation.referencesen | [20] G. Golub, M. Tregub, A. Holubenko, V. Chuba, M. Tereshchuk, Determining of the influence of reactor parameters on the uniformity of mixing substrate components. Eastern-European Journal of Enterprise Technologies, 2020, 6(7–108), 60–70 http://journals.uran.ua/eejet/article/view/217159 | |
dc.relation.referencesen | [21] V. Zubenko, O. Epik, V. Antonenko. Development and optimization of fast ablative pyrolysis technology in Ukraine. Energetika, 2018, T. 64. No. 1, 1–10. https://kriger.com.ua/en/projects/ | |
dc.relation.referencesen | [22] L. S. Chervinsky, "The ways and effects of ultraviolet radiation on the human and animal body", Proc. SPIE 11363, Tissue Optics and Photonics, 113630I (2 April 2020). DOI: 10.1117/12.2552719. https://www.scopus.com/record/display.uri?eid=2-s2.0-85087085997&origin=resultslist&sort=plf-fwww.altek.ua | |
dc.relation.referencesen | [23] Y. V. Tascheiev, S. V. Voitko, O. O. Trofimenko, O. O. Repkin, T. S. Kudrya. Global trends in the development of hydrogen technologies in industry. BusinessInform, 2020. No. 8, 103–114. https://doi.org/10.32983/2222-4459-2020-8-103-114 | |
dc.relation.referencesen | [24] V. M. Karpenko, Yu. P. Starodub. Research of geothermal energy parameters in deep wells JGD. 2017; Vol. 1(22) 2017, No. 1(22) 2017, 85–97. https://doi.org/10.23939/jgd2017.01.085 | |
dc.relation.referencesen | [25] T. G. Karayiannis, et. al. (2022), "Energy availability from deep geothermal wells using coaxial heat exchangers". 19th International Conference on Sustainable Energy Technologies; 16 Aug 2022; Istanbul, Turkey; Sustainable Energy Technologies, 1–10. URL: http://bura.brunel.ac.uk/handle/2438/25108 | |
dc.relation.referencesen | [26] T. Kujawa, T. Nowak, W. Stachel, Aleksander. (2006). Utilization of existing deep geological wells for acquisition of geothermal energy. Energy, 31, 650–664. https://doi.org/10.1016/j.energy.2005.05.002 . | |
dc.relation.referencesen | [27] A. Baroutaji, T. Wiberforce, M. Ramadan, A. Ghani Olabi. A comprehensive investigation of hydrogen and fuel technology in the aviation and aerospace sectors. Renewable and Sustainable Energy Reviews, Vol. 106, May 2019, 31– 40. DOI: 10.1016/j.rser.2019.02.022 | |
dc.relation.referencesen | [28] V. Karpenko, Yu. Starodub, A. Havrys. Computer Modeling in the Application to Geothermal Engineering, Advances in Civil Engineering, Vol. 2021, Article ID 6619991, 23 p., 2021. https://doi.org/10.1155/2021/ 6619991 | |
dc.relation.referencesen | [29] A.-J. Perea-Moreno, Q. Hernandez-Escobedo, The Sustainable City: Advances in Renewable Energy and Energy Saving Systems. Energies 2021, 14, 8382. https://doi.org/10.3390/en14248382 | |
dc.relation.referencesen | [30] P. Gasser, P. Lustenberger, M. Cinelli, W. Kim, M. Spada, P. Burgherr, S. Hirschberg, B. Stojadinovic, T. Sun (2019): A review on resilience assessment of energy systems, sustainable and resilient infrastructure to link to this article. https://doi.org/10.1080/23789689.2019.1610600 | |
dc.relation.referencesen | [31] Y. Starodub, V. Karpenko, A. Havrys, and D. Behen, "Development of the methodology of energy and environmental safety of Ukraine based on own geothermic", GJ, Vol. 45, No. 4, Aug. 2023. DOI: https://doi.org/10.24028/gj.v45i4.286289 | |
dc.relation.referencesen | [32] R. Holden, D. Val, R. Burkhard, S. Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013 | |
dc.relation.uri | https://www.un.org | |
dc.relation.uri | https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook2022#page-1 | |
dc.relation.uri | https://doi.org/10.26565/2310-9513-2023-17-06 | |
dc.relation.uri | https://doi.org/10.1016/j.enpol.2009.02.006 | |
dc.relation.uri | https://doi.org/10.1016/j.ssci.2012.08.013 | |
dc.relation.uri | https://doi.org/10.1016/j.esr.2022.101013 | |
dc.relation.uri | https://doi.org/10.1016/j.enbuild.2019.04.040 | |
dc.relation.uri | https://doi.org/10.1051/e3sconf/202338705011 | |
dc.relation.uri | https://doi.org/10.48084/etasr.5090 | |
dc.relation.uri | http://doi.org/10.7769/gesec.v14i3.1802 | |
dc.relation.uri | https://doi.org/10.1016/j.ijcip.2016.06.002 | |
dc.relation.uri | https://h2.wutmarc.ua | |
dc.relation.uri | https://ecopolitic.com.ua/ua/news/ukraina-ta-ies-uklali-strategichnepartnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/ | |
dc.relation.uri | https://www.naftogaz.com/news/green-hydrogenukraine-germany | |
dc.relation.uri | https://doi.org/10.3390/app13063986 | |
dc.relation.uri | https://zaxid.net/pershiy_zeleniy_n1525661 | |
dc.relation.uri | http://surl.li/nsehr | |
dc.relation.uri | https://doi.org/10.48506/opus-7948 | |
dc.relation.uri | https://doi.org/10.1038/s41560-019-0326-1 | |
dc.relation.uri | http://journals.uran.ua/eejet/article/view/217159 | |
dc.relation.uri | https://kriger.com.ua/en/projects/ | |
dc.relation.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85087085997&origin=resultslist&sort=plf-fwww.altek.ua | |
dc.relation.uri | https://doi.org/10.32983/2222-4459-2020-8-103-114 | |
dc.relation.uri | https://doi.org/10.23939/jgd2017.01.085 | |
dc.relation.uri | http://bura.brunel.ac.uk/handle/2438/25108 | |
dc.relation.uri | https://doi.org/10.1016/j.energy.2005.05.002 | |
dc.relation.uri | https://doi.org/10.1155/2021/ | |
dc.relation.uri | https://doi.org/10.3390/en14248382 | |
dc.relation.uri | https://doi.org/10.1080/23789689.2019.1610600 | |
dc.relation.uri | https://doi.org/10.24028/gj.v45i4.286289 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | validation | |
dc.subject | deep well | |
dc.subject | geothermal energy | |
dc.subject | critical facility | |
dc.subject | energy supply | |
dc.title | Comparative assessment of renewable sources for critical facilities of decentralized supply | |
dc.type | Article |
Files
License bundle
1 - 1 of 1