Comparative assessment of renewable sources for critical facilities of decentralized supply

dc.citation.epage16
dc.citation.issue4
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage10
dc.contributor.affiliationNational Joint Stock Company “Naftogaz of Ukraine”
dc.contributor.affiliationPukhov Institute for Modelling in Energy Engineering
dc.contributor.affiliationLviv State University of Life Safety
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKarpenko, Vasily
dc.contributor.authorStarodub, Yuriy
dc.contributor.authorRudyk, Yuri
dc.contributor.authorKuts, Viktor
dc.contributor.authorZdeb, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T07:16:40Z
dc.date.available2024-04-03T07:16:40Z
dc.date.created2023-03-01
dc.date.issued2023-03-01
dc.description.abstractThe concept of energy supply is widely discussed, but there is no consensus on ways of its provision. In the current research, we have provided an analysis of available combinations of renewable sources for decentralized energy supply. It is important for critical facilities on territorial society and district levels. The article considers the safety of the technical component of a complex organizational and technical system by studying the functional relationship between the parameters: temperature, time, active power, hydrogen participation, etc. The idea of the work is to evaluate the ratios of generating capacities of different types of renewable sources in complex systems and select highly efficient technologies and energy means for decentralized energy supply.
dc.format.extent10-16
dc.format.pages7
dc.identifier.citationComparative assessment of renewable sources for critical facilities of decentralized supply / Vasily Karpenko, Yuriy Starodub, Yuri Rudyk, Viktor Kuts, Volodymyr Zdeb // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 4. — P. 10–16.
dc.identifier.citationenComparative assessment of renewable sources for critical facilities of decentralized supply / Vasily Karpenko, Yuriy Starodub, Yuri Rudyk, Viktor Kuts, Volodymyr Zdeb // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 4. — P. 10–16.
dc.identifier.doidoi.org/10.23939/istcmtm2023.04.010
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61625
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 4 (84), 2023
dc.relation.ispartofMeasuring Equipment and Metrology, 4 (84), 2023
dc.relation.references[1] Hickmann, T., Widerberg, O., Lederer, M., Pattberg, P. (2021). The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking. International Review of Administrative Sciences, 87(1), 21–38. https://www.un.org›conferences›energy2021
dc.relation.references[2] IRENA (2022), World Energy Transitions Outlook 2022: 1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. Available for download: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook2022#page-1
dc.relation.references[3] Borys Pokhodenko (2023). Review and comparative analysis of energy security concepts of the European Union and Ukraine. The Journal of V. N. Karazin Kharkiv National University. Series: International Relations. Economics. Country Studies. Tourism, (17), 56–79. https://doi.org/10.26565/2310-9513-2023-17-06 .
dc.relation.references[4] Bert Kruyt, D. P. van Vuuren, H. J. M. de Vries, H. Groenenberg, Indicators for energy security, Energy Policy, Vol. 37, Iss. 6, 2009, 2166–2181, https://doi.org/10.1016/j.enpol.2009.02.006.
dc.relation.references[5] Richard Holden, Dimitri V. Val, Roland Burkhard, Sarah Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013
dc.relation.references[6] Fatma S. Hafez, Bahaaeddin Sa'di, M. Safa-Gamal, Y.H. Taufiq-Yap, Moath Alrifaey, Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, Saad Mekhilef, Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research, Energy Strategy Reviews, Vol. 45, 2023, 101013. https://doi.org/10.1016/j.esr.2022.101013
dc.relation.references[7] C. Zhang, C. Cui, Y. Zhang, J. Yuan, Y. Luo, W. Gang, A review of renewable energy assessment methods in green building and green neighborhood rating systems, Energy Build, 195 (2019) 68–81. https://doi.org/10.1016/j.enbuild.2019.04.040
dc.relation.references[8] Ranganathan R et al. (2023). A comparative study of renewable energy sources for power generation in rural areas ICSERET-2023, E3S Web of Conferences 387, 05011. https://doi.org/10.1051/e3sconf/202338705011
dc.relation.references[9] Ghania et al.: ΑReliability Study of Renewable Energy Resources and their Integration with Utility Grids Engineering, Technology & Applied Science Research, Vol. 12, No. 5, 2022, 9078–9086. https://doi.org/10.48084/etasr.5090
dc.relation.references[10] Fenerich F. C. et al. Energy efficiency in industrial environments: an updated review and a new research agenda, Revista Gestão e Secretariado (GeSec), São Paulo, SP, Vol. 14, No. 3, 2023, 3319–3347. http://doi.org/10.7769/gesec.v14i3.1802
dc.relation.references[11] Rehak D., Markuci J., Hromada M., Barcova K. Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection, Vol. 14, 2016, 3–17. https://doi.org/10.1016/j.ijcip.2016.06.002 .
dc.relation.references[12] WUTMARC HYDROGEN STATIONS. URL: https://h2.wutmarc.ua
dc.relation.references[13] Ukraine and the EU concluded a strategic partnership in the fields of green hydrogen and biogas. URL: https://ecopolitic.com.ua/ua/news/ukraina-ta-ies-uklali-strategichnepartnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/
dc.relation.references[14] Naftogaz signs green hydrogen “H2EU+Store” MOU on the transport of hydrogen produced in Ukraine to Germany. URL: https://www.naftogaz.com/news/green-hydrogenukraine-germany
dc.relation.references[15] Choi, Y. Renewable Energy Systems: Optimal Planning and Design. Appl. Sci. 2023, 13, 3986. https://doi.org/10.3390/app13063986
dc.relation.references[16] Ukraine’s first green hydrogen plant to be built in Lviv region. URL: https://zaxid.net/pershiy_zeleniy_n1525661
dc.relation.references[17] Replace-gas-in-Ukrainian-GTS-with-green-hydrogen. URL: http://surl.li/nsehr
dc.relation.references[18] Merten, F., Scholz, A., Krüger, C., Heck, S., Girard, Y., Mecke, M., & Goerge, M. (2020). Bewertung der Vorund Nachteile von Wasserstoffimporten im Vergleich zur heimischen Produktion, Studie für den Landesverband Erneuerbare Energien NRW e. V., Wuppertal Institut & DIW Econ. https://doi.org/10.48506/opus-7948
dc.relation.references[19] Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydrogen. Nature Energy, 4 (3), 216–222. https://doi.org/10.1038/s41560-019-0326-1
dc.relation.references[20] G. Golub, M. Tregub, A. Holubenko, V. Chuba, M. Tereshchuk, Determining of the influence of reactor parameters on the uniformity of mixing substrate components. Eastern-European Journal of Enterprise Technologies, 2020, 6(7–108), 60–70 http://journals.uran.ua/eejet/article/view/217159
dc.relation.references[21] V. Zubenko, O. Epik, V. Antonenko. Development and optimization of fast ablative pyrolysis technology in Ukraine. Energetika, 2018, T. 64. No. 1, 1–10. https://kriger.com.ua/en/projects/
dc.relation.references[22] L. S. Chervinsky, “The ways and effects of ultraviolet radiation on the human and animal body”, Proc. SPIE 11363, Tissue Optics and Photonics, 113630I (2 April 2020). DOI: 10.1117/12.2552719. https://www.scopus.com/record/display.uri?eid=2-s2.0-85087085997&origin=resultslist&sort=plf-fwww.altek.ua
dc.relation.references[23] Y. V. Tascheiev, S. V. Voitko, O. O. Trofimenko, O. O. Repkin, T. S. Kudrya. Global trends in the development of hydrogen technologies in industry. BusinessInform, 2020. No. 8, 103–114. https://doi.org/10.32983/2222-4459-2020-8-103-114
dc.relation.references[24] V. M. Karpenko, Yu. P. Starodub. Research of geothermal energy parameters in deep wells JGD. 2017; Vol. 1(22) 2017, No. 1(22) 2017, 85–97. https://doi.org/10.23939/jgd2017.01.085
dc.relation.references[25] T. G. Karayiannis, et. al. (2022), “Energy availability from deep geothermal wells using coaxial heat exchangers”. 19th International Conference on Sustainable Energy Technologies; 16 Aug 2022; Istanbul, Turkey; Sustainable Energy Technologies, 1–10. URL: http://bura.brunel.ac.uk/handle/2438/25108
dc.relation.references[26] T. Kujawa, T. Nowak, W. Stachel, Aleksander. (2006). Utilization of existing deep geological wells for acquisition of geothermal energy. Energy, 31, 650–664. https://doi.org/10.1016/j.energy.2005.05.002 .
dc.relation.references[27] A. Baroutaji, T. Wiberforce, M. Ramadan, A. Ghani Olabi. A comprehensive investigation of hydrogen and fuel technology in the aviation and aerospace sectors. Renewable and Sustainable Energy Reviews, Vol. 106, May 2019, 31– 40. DOI: 10.1016/j.rser.2019.02.022
dc.relation.references[28] V. Karpenko, Yu. Starodub, A. Havrys. Computer Modeling in the Application to Geothermal Engineering. – Advances in Civil Engineering, Vol. 2021, Article ID 6619991, 23 p., 2021. https://doi.org/10.1155/2021/ 6619991
dc.relation.references[29] A.-J. Perea-Moreno, Q. Hernandez-Escobedo, The Sustainable City: Advances in Renewable Energy and Energy Saving Systems. Energies 2021, 14, 8382. https://doi.org/10.3390/en14248382
dc.relation.references[30] P. Gasser, P. Lustenberger, M. Cinelli, W. Kim, M. Spada, P. Burgherr, S. Hirschberg, B. Stojadinovic, T. Sun (2019): A review on resilience assessment of energy systems, sustainable and resilient infrastructure to link to this article. https://doi.org/10.1080/23789689.2019.1610600
dc.relation.references[31] Y. Starodub, V. Karpenko, A. Havrys, and D. Behen, “Development of the methodology of energy and environmental safety of Ukraine based on own geothermic”, GJ, Vol. 45, No. 4, Aug. 2023. DOI: https://doi.org/10.24028/gj.v45i4.286289
dc.relation.references[32] R. Holden, D. Val, R. Burkhard, S. Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013
dc.relation.referencesen[1] Hickmann, T., Widerberg, O., Lederer, M., Pattberg, P. (2021). The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking. International Review of Administrative Sciences, 87(1), 21–38. https://www.un.org›conferences›energy2021
dc.relation.referencesen[2] IRENA (2022), World Energy Transitions Outlook 2022: 1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. Available for download: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook2022#page-1
dc.relation.referencesen[3] Borys Pokhodenko (2023). Review and comparative analysis of energy security concepts of the European Union and Ukraine. The Journal of V. N. Karazin Kharkiv National University. Series: International Relations. Economics. Country Studies. Tourism, (17), 56–79. https://doi.org/10.26565/2310-9513-2023-17-06 .
dc.relation.referencesen[4] Bert Kruyt, D. P. van Vuuren, H. J. M. de Vries, H. Groenenberg, Indicators for energy security, Energy Policy, Vol. 37, Iss. 6, 2009, 2166–2181, https://doi.org/10.1016/j.enpol.2009.02.006.
dc.relation.referencesen[5] Richard Holden, Dimitri V. Val, Roland Burkhard, Sarah Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013
dc.relation.referencesen[6] Fatma S. Hafez, Bahaaeddin Sa'di, M. Safa-Gamal, Y.H. Taufiq-Yap, Moath Alrifaey, Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, Saad Mekhilef, Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research, Energy Strategy Reviews, Vol. 45, 2023, 101013. https://doi.org/10.1016/j.esr.2022.101013
dc.relation.referencesen[7] C. Zhang, C. Cui, Y. Zhang, J. Yuan, Y. Luo, W. Gang, A review of renewable energy assessment methods in green building and green neighborhood rating systems, Energy Build, 195 (2019) 68–81. https://doi.org/10.1016/j.enbuild.2019.04.040
dc.relation.referencesen[8] Ranganathan R et al. (2023). A comparative study of renewable energy sources for power generation in rural areas ICSERET-2023, E3S Web of Conferences 387, 05011. https://doi.org/10.1051/e3sconf/202338705011
dc.relation.referencesen[9] Ghania et al., AReliability Study of Renewable Energy Resources and their Integration with Utility Grids Engineering, Technology & Applied Science Research, Vol. 12, No. 5, 2022, 9078–9086. https://doi.org/10.48084/etasr.5090
dc.relation.referencesen[10] Fenerich F. C. et al. Energy efficiency in industrial environments: an updated review and a new research agenda, Revista Gestão e Secretariado (GeSec), São Paulo, SP, Vol. 14, No. 3, 2023, 3319–3347. http://doi.org/10.7769/gesec.v14i3.1802
dc.relation.referencesen[11] Rehak D., Markuci J., Hromada M., Barcova K. Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection, Vol. 14, 2016, 3–17. https://doi.org/10.1016/j.ijcip.2016.06.002 .
dc.relation.referencesen[12] WUTMARC HYDROGEN STATIONS. URL: https://h2.wutmarc.ua
dc.relation.referencesen[13] Ukraine and the EU concluded a strategic partnership in the fields of green hydrogen and biogas. URL: https://ecopolitic.com.ua/ua/news/ukraina-ta-ies-uklali-strategichnepartnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/
dc.relation.referencesen[14] Naftogaz signs green hydrogen "H2EU+Store" MOU on the transport of hydrogen produced in Ukraine to Germany. URL: https://www.naftogaz.com/news/green-hydrogenukraine-germany
dc.relation.referencesen[15] Choi, Y. Renewable Energy Systems: Optimal Planning and Design. Appl. Sci. 2023, 13, 3986. https://doi.org/10.3390/app13063986
dc.relation.referencesen[16] Ukraine’s first green hydrogen plant to be built in Lviv region. URL: https://zaxid.net/pershiy_zeleniy_n1525661
dc.relation.referencesen[17] Replace-gas-in-Ukrainian-GTS-with-green-hydrogen. URL: http://surl.li/nsehr
dc.relation.referencesen[18] Merten, F., Scholz, A., Krüger, C., Heck, S., Girard, Y., Mecke, M., & Goerge, M. (2020). Bewertung der Vorund Nachteile von Wasserstoffimporten im Vergleich zur heimischen Produktion, Studie für den Landesverband Erneuerbare Energien NRW e. V., Wuppertal Institut & DIW Econ. https://doi.org/10.48506/opus-7948
dc.relation.referencesen[19] Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydrogen. Nature Energy, 4 (3), 216–222. https://doi.org/10.1038/s41560-019-0326-1
dc.relation.referencesen[20] G. Golub, M. Tregub, A. Holubenko, V. Chuba, M. Tereshchuk, Determining of the influence of reactor parameters on the uniformity of mixing substrate components. Eastern-European Journal of Enterprise Technologies, 2020, 6(7–108), 60–70 http://journals.uran.ua/eejet/article/view/217159
dc.relation.referencesen[21] V. Zubenko, O. Epik, V. Antonenko. Development and optimization of fast ablative pyrolysis technology in Ukraine. Energetika, 2018, T. 64. No. 1, 1–10. https://kriger.com.ua/en/projects/
dc.relation.referencesen[22] L. S. Chervinsky, "The ways and effects of ultraviolet radiation on the human and animal body", Proc. SPIE 11363, Tissue Optics and Photonics, 113630I (2 April 2020). DOI: 10.1117/12.2552719. https://www.scopus.com/record/display.uri?eid=2-s2.0-85087085997&origin=resultslist&sort=plf-fwww.altek.ua
dc.relation.referencesen[23] Y. V. Tascheiev, S. V. Voitko, O. O. Trofimenko, O. O. Repkin, T. S. Kudrya. Global trends in the development of hydrogen technologies in industry. BusinessInform, 2020. No. 8, 103–114. https://doi.org/10.32983/2222-4459-2020-8-103-114
dc.relation.referencesen[24] V. M. Karpenko, Yu. P. Starodub. Research of geothermal energy parameters in deep wells JGD. 2017; Vol. 1(22) 2017, No. 1(22) 2017, 85–97. https://doi.org/10.23939/jgd2017.01.085
dc.relation.referencesen[25] T. G. Karayiannis, et. al. (2022), "Energy availability from deep geothermal wells using coaxial heat exchangers". 19th International Conference on Sustainable Energy Technologies; 16 Aug 2022; Istanbul, Turkey; Sustainable Energy Technologies, 1–10. URL: http://bura.brunel.ac.uk/handle/2438/25108
dc.relation.referencesen[26] T. Kujawa, T. Nowak, W. Stachel, Aleksander. (2006). Utilization of existing deep geological wells for acquisition of geothermal energy. Energy, 31, 650–664. https://doi.org/10.1016/j.energy.2005.05.002 .
dc.relation.referencesen[27] A. Baroutaji, T. Wiberforce, M. Ramadan, A. Ghani Olabi. A comprehensive investigation of hydrogen and fuel technology in the aviation and aerospace sectors. Renewable and Sustainable Energy Reviews, Vol. 106, May 2019, 31– 40. DOI: 10.1016/j.rser.2019.02.022
dc.relation.referencesen[28] V. Karpenko, Yu. Starodub, A. Havrys. Computer Modeling in the Application to Geothermal Engineering, Advances in Civil Engineering, Vol. 2021, Article ID 6619991, 23 p., 2021. https://doi.org/10.1155/2021/ 6619991
dc.relation.referencesen[29] A.-J. Perea-Moreno, Q. Hernandez-Escobedo, The Sustainable City: Advances in Renewable Energy and Energy Saving Systems. Energies 2021, 14, 8382. https://doi.org/10.3390/en14248382
dc.relation.referencesen[30] P. Gasser, P. Lustenberger, M. Cinelli, W. Kim, M. Spada, P. Burgherr, S. Hirschberg, B. Stojadinovic, T. Sun (2019): A review on resilience assessment of energy systems, sustainable and resilient infrastructure to link to this article. https://doi.org/10.1080/23789689.2019.1610600
dc.relation.referencesen[31] Y. Starodub, V. Karpenko, A. Havrys, and D. Behen, "Development of the methodology of energy and environmental safety of Ukraine based on own geothermic", GJ, Vol. 45, No. 4, Aug. 2023. DOI: https://doi.org/10.24028/gj.v45i4.286289
dc.relation.referencesen[32] R. Holden, D. Val, R. Burkhard, S. Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013
dc.relation.urihttps://www.un.org
dc.relation.urihttps://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook2022#page-1
dc.relation.urihttps://doi.org/10.26565/2310-9513-2023-17-06
dc.relation.urihttps://doi.org/10.1016/j.enpol.2009.02.006
dc.relation.urihttps://doi.org/10.1016/j.ssci.2012.08.013
dc.relation.urihttps://doi.org/10.1016/j.esr.2022.101013
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2019.04.040
dc.relation.urihttps://doi.org/10.1051/e3sconf/202338705011
dc.relation.urihttps://doi.org/10.48084/etasr.5090
dc.relation.urihttp://doi.org/10.7769/gesec.v14i3.1802
dc.relation.urihttps://doi.org/10.1016/j.ijcip.2016.06.002
dc.relation.urihttps://h2.wutmarc.ua
dc.relation.urihttps://ecopolitic.com.ua/ua/news/ukraina-ta-ies-uklali-strategichnepartnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/
dc.relation.urihttps://www.naftogaz.com/news/green-hydrogenukraine-germany
dc.relation.urihttps://doi.org/10.3390/app13063986
dc.relation.urihttps://zaxid.net/pershiy_zeleniy_n1525661
dc.relation.urihttp://surl.li/nsehr
dc.relation.urihttps://doi.org/10.48506/opus-7948
dc.relation.urihttps://doi.org/10.1038/s41560-019-0326-1
dc.relation.urihttp://journals.uran.ua/eejet/article/view/217159
dc.relation.urihttps://kriger.com.ua/en/projects/
dc.relation.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85087085997&origin=resultslist&sort=plf-fwww.altek.ua
dc.relation.urihttps://doi.org/10.32983/2222-4459-2020-8-103-114
dc.relation.urihttps://doi.org/10.23939/jgd2017.01.085
dc.relation.urihttp://bura.brunel.ac.uk/handle/2438/25108
dc.relation.urihttps://doi.org/10.1016/j.energy.2005.05.002
dc.relation.urihttps://doi.org/10.1155/2021/
dc.relation.urihttps://doi.org/10.3390/en14248382
dc.relation.urihttps://doi.org/10.1080/23789689.2019.1610600
dc.relation.urihttps://doi.org/10.24028/gj.v45i4.286289
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectvalidation
dc.subjectdeep well
dc.subjectgeothermal energy
dc.subjectcritical facility
dc.subjectenergy supply
dc.titleComparative assessment of renewable sources for critical facilities of decentralized supply
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v84n4_Karpenko_V-Comparative_assessment_of_10-16.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v84n4_Karpenko_V-Comparative_assessment_of_10-16__COVER.png
Size:
506.54 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: