Absolute sea level changes at the tide gauge station in Władysławowo using different time series software packages

dc.citation.epage23
dc.citation.journalTitleГеодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник
dc.citation.spage13
dc.citation.volume88
dc.contributor.affiliationПольський університет військово-повітряних сил
dc.contributor.affiliationКошалінський технологічний університет
dc.contributor.affiliationPolish Air Force University
dc.contributor.affiliationEnvironmental and Geodetic Science Koszalin University of Technology
dc.contributor.authorЛишковіч, Адам
dc.contributor.authorБернатовіч, Анна
dc.contributor.authorŁyszkowicz, Adam
dc.contributor.authorBernatowicz, Anna
dc.coverage.placenameЛьвів
dc.date.accessioned2019-11-06T12:28:52Z
dc.date.available2019-11-06T12:28:52Z
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.format.extent13-23
dc.format.pages11
dc.identifier.citationŁyszkowicz A. Absolute sea level changes at the tide gauge station in Władysławowo using different time series software packages / Adam Łyszkowicz, Anna Bernatowicz // Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 88. — С. 13–23.
dc.identifier.citationenŁyszkowicz A. Absolute sea level changes at the tide gauge station in Władysławowo using different time series software packages / Adam Łyszkowicz, Anna Bernatowicz // Geodesy, cartography and aerial photography : interdepartmental scientific and technical review. — Vydavnytstvo Lvivskoi politekhniky, 2018. — Vol 88. — P. 13–23.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45502
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofГеодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник (88), 2018
dc.relation.ispartofGeodesy, cartography and aerial photography : interdepartmental scientific and technical review (88), 2018
dc.relation.referencesAltamimi, Z., Sillard, P. & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.
dc.relation.referencesAkaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
dc.relation.referencesBaarda, W. (1968). A testing procedure for use in geodetic networks, Computing Centre of the Delft Geodetic Institute, Netherlands Geodetic Commission, Publications on Geodesy, New Series, 2, 5
dc.relation.referencesBitharis, S., Ampatzidis, D., Pikridas, Ch., Fotiou. A., Rossikopoulos, D. & Schuh. H. (2017). The Role of GNSS Vertical Velocities to Correct Estimates of Sea Level Rise from Tide Gauge Measurements in Greece. Marine Geodesy, 40(5), 297–314, https://doi.org/10.1080/01490419.2017.1322646
dc.relation.referencesBlewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., 108(B2), 2103, doi:10.1029/2002JB002082,
dc.relation.referencesBlewitt, G., Hammond, W. C. & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623.
dc.relation.referencesBos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2008). Fast error analysis of continuous GPS observations. J. Geodesy, 82 (3), 157–166.
dc.relation.referencesBos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2013). Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod., 87(4):351–360.
dc.relation.referencesBronsztejn, I. N., Siemiendiajew, K. A., Musil, G. & Muhlig, H. (2004). Modern Compendium of Mathematics, in Polish, Wydawnictwo Naukowe PWN
dc.relation.referencesBox, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time series analysis: forecasting and control, John Wiley and Sons, 5th edition, ISBN: 978-1-118-67502-1
dc.relation.referencesCazenave, A., Bonnefond, P., Mercier, F., Dominh, K. & Toumazou, V. (2002): Sea level variations in the Mediterranean Sea and Black Sea from satellite Lviv Polytechnic altimetry and tide gauges, Global and Planetary Change, 34(1), 59–86.
dc.relation.referencesDziadziuszko, Zb. & Jednorał T. (1987). Wahania poziomów morza na polskim wybrzeżu Bałtyku. Dynamika Morza (6), Studia i Materiały Oceanologiczne, 52.
dc.relation.referencesEkman, M. (1984). Impacts of geodynamic phenomena on systems for height and gravity, Bulletin Géodésique, 63, 281–296
dc.relation.referencesFu, L. L. & Cazenave, A. (Eds.). (2000). Satellite altimetry and earth sciences: a handbook of techniques and applications (Vol. 69), Elsevier.
dc.relation.referencesGazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M. ... & Teferle, F. N.. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth, 118(5), 2397–2407.
dc.relation.referencesGrgić, M., Nerem, R. S., Bašić, T. (2017). Absolute Sea Level Surface Modeling for the Mediterranean from Satellite Altimeter and Tide Gauge Measurements, Marine Geodesy, 40(4), 239–258.
dc.relation.referencesGoudarzi, M. A., Cocard, M., Santerre, R. & Woldai, T. (2013). GPS interactive time series analysis software, GPS Solution (2013) 17:595–603, DOI 10.1007/s10291-012-0296-2
dc.relation.referencesHerring, T. (2003). MATLAB tools for viewing GPS velocities and time series, GPS Solution, January 2003GPS Solutions 7(3):194-199 DOI: 10.1007/s10291-003-0068-0
dc.relation.referencesIPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., V. R. Barros, D. J. D]
dc.relation.referencesKalas, M. (1993). Characteristics of sea level changes on the Polish Coast of the Baltic Sea in the last fortyfive years. Proc. of International Workshop, SEA CHANGE’ 93 – Sea Level Changes and their Consequences for Hydrology and Water Management, Nordvvijkerhout, Netherlands, 1, 51–60.
dc.relation.referencesKing, R. W. (2002). Documentation for the GAMIT GPS analysis software, MIT Internal Report, 206 p(http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf)
dc.relation.referencesKing, R. W. & Herring, T. (2002). Global Kalman filter VLBI and GPS analysis program, MIT Internal Report, 98 p (http://wwwgpsg.mit.edu/simon/gtgk/GLOBK.pdf)
dc.relation.referencesŁyszkowicz, A. (1995). Relative Mean Surface Topography Along the Southern Part of Baltic Sea. Artificial Satellites, Planetary Geodesy, (25), 133–141
dc.relation.referencesMontag, H. (1967). Bestimmung rezenter Niveauverschiebangen aus langjährigen Wasserstandsbeobachtungen der Südlichten OstSeeküste, (Doctoral dissertation, Verlag nicht ermittelbar).
dc.relation.referencesPajak K. & Kowalczyk, K. (2018). A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data, Advances in Space Research, Available online 7 December 2018, https://doi.org/10.1016/j.asr.2018.11.022
dc.relation.referencesRichter, A., Groh, A. & Dietrich, R. (2012). Geodetic observations of sea-level change and crustal deformation in the Baltic Sea region, Physics and Chemistry of the Earth, Parts A/B/C, 53, 43–53
dc.relation.referencesSchwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464.
dc.relation.referencesVermeer, M., Kakkuri, J., Mälkki, P., Boman, H., Kahma, K. K. & Leppäranta, M. (1988). Land uplift and sea level variability spectrum using fully measured monthly means of tide gauge readings.
dc.relation.referencesWöppelmann, G., Sacher, M., Adam, J., Gurtner, W., Harsson, B. G., Ihde, J., Schlüter, W. (Eds. Ihde J., Sacher M.). (2002). Report on EUVN tide gauge data collection and analysis, European Vertical Reference Network, Sub-Commission for Europe (EUREF).
dc.relation.referencesWöppelmann G. & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54.1, 64–92. doi:10.1002/2015RG000502
dc.relation.referencesenAltamimi, Z., Sillard, P. & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.
dc.relation.referencesenAkaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
dc.relation.referencesenBaarda, W. (1968). A testing procedure for use in geodetic networks, Computing Centre of the Delft Geodetic Institute, Netherlands Geodetic Commission, Publications on Geodesy, New Series, 2, 5
dc.relation.referencesenBitharis, S., Ampatzidis, D., Pikridas, Ch., Fotiou. A., Rossikopoulos, D. & Schuh. H. (2017). The Role of GNSS Vertical Velocities to Correct Estimates of Sea Level Rise from Tide Gauge Measurements in Greece. Marine Geodesy, 40(5), 297–314, https://doi.org/10.1080/01490419.2017.1322646
dc.relation.referencesenBlewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., 108(B2), 2103, doi:10.1029/2002JB002082,
dc.relation.referencesenBlewitt, G., Hammond, W. C. & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623.
dc.relation.referencesenBos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2008). Fast error analysis of continuous GPS observations. J. Geodesy, 82 (3), 157–166.
dc.relation.referencesenBos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2013). Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod., 87(4):351–360.
dc.relation.referencesenBronsztejn, I. N., Siemiendiajew, K. A., Musil, G. & Muhlig, H. (2004). Modern Compendium of Mathematics, in Polish, Wydawnictwo Naukowe PWN
dc.relation.referencesenBox, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time series analysis: forecasting and control, John Wiley and Sons, 5th edition, ISBN: 978-1-118-67502-1
dc.relation.referencesenCazenave, A., Bonnefond, P., Mercier, F., Dominh, K. & Toumazou, V. (2002): Sea level variations in the Mediterranean Sea and Black Sea from satellite Lviv Polytechnic altimetry and tide gauges, Global and Planetary Change, 34(1), 59–86.
dc.relation.referencesenDziadziuszko, Zb. & Jednorał T. (1987). Wahania poziomów morza na polskim wybrzeżu Bałtyku. Dynamika Morza (6), Studia i Materiały Oceanologiczne, 52.
dc.relation.referencesenEkman, M. (1984). Impacts of geodynamic phenomena on systems for height and gravity, Bulletin Géodésique, 63, 281–296
dc.relation.referencesenFu, L. L. & Cazenave, A. (Eds.). (2000). Satellite altimetry and earth sciences: a handbook of techniques and applications (Vol. 69), Elsevier.
dc.relation.referencesenGazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M. ... & Teferle, F. N.. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth, 118(5), 2397–2407.
dc.relation.referencesenGrgić, M., Nerem, R. S., Bašić, T. (2017). Absolute Sea Level Surface Modeling for the Mediterranean from Satellite Altimeter and Tide Gauge Measurements, Marine Geodesy, 40(4), 239–258.
dc.relation.referencesenGoudarzi, M. A., Cocard, M., Santerre, R. & Woldai, T. (2013). GPS interactive time series analysis software, GPS Solution (2013) 17:595–603, DOI 10.1007/s10291-012-0296-2
dc.relation.referencesenHerring, T. (2003). MATLAB tools for viewing GPS velocities and time series, GPS Solution, January 2003GPS Solutions 7(3):194-199 DOI: 10.1007/s10291-003-0068-0
dc.relation.referencesenIPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., V. R. Barros, D. J. D]
dc.relation.referencesenKalas, M. (1993). Characteristics of sea level changes on the Polish Coast of the Baltic Sea in the last fortyfive years. Proc. of International Workshop, SEA CHANGE’ 93 – Sea Level Changes and their Consequences for Hydrology and Water Management, Nordvvijkerhout, Netherlands, 1, 51–60.
dc.relation.referencesenKing, R. W. (2002). Documentation for the GAMIT GPS analysis software, MIT Internal Report, 206 p(http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf)
dc.relation.referencesenKing, R. W. & Herring, T. (2002). Global Kalman filter VLBI and GPS analysis program, MIT Internal Report, 98 p (http://wwwgpsg.mit.edu/simon/gtgk/GLOBK.pdf)
dc.relation.referencesenŁyszkowicz, A. (1995). Relative Mean Surface Topography Along the Southern Part of Baltic Sea. Artificial Satellites, Planetary Geodesy, (25), 133–141
dc.relation.referencesenMontag, H. (1967). Bestimmung rezenter Niveauverschiebangen aus langjährigen Wasserstandsbeobachtungen der Südlichten OstSeeküste, (Doctoral dissertation, Verlag nicht ermittelbar).
dc.relation.referencesenPajak K. & Kowalczyk, K. (2018). A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data, Advances in Space Research, Available online 7 December 2018, https://doi.org/10.1016/j.asr.2018.11.022
dc.relation.referencesenRichter, A., Groh, A. & Dietrich, R. (2012). Geodetic observations of sea-level change and crustal deformation in the Baltic Sea region, Physics and Chemistry of the Earth, Parts A/B/C, 53, 43–53
dc.relation.referencesenSchwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464.
dc.relation.referencesenVermeer, M., Kakkuri, J., Mälkki, P., Boman, H., Kahma, K. K. & Leppäranta, M. (1988). Land uplift and sea level variability spectrum using fully measured monthly means of tide gauge readings.
dc.relation.referencesenWöppelmann, G., Sacher, M., Adam, J., Gurtner, W., Harsson, B. G., Ihde, J., Schlüter, W. (Eds. Ihde J., Sacher M.). (2002). Report on EUVN tide gauge data collection and analysis, European Vertical Reference Network, Sub-Commission for Europe (EUREF).
dc.relation.referencesenWöppelmann G. & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54.1, 64–92. doi:10.1002/2015RG000502
dc.relation.urihttps://doi.org/10.1080/01490419.2017.1322646
dc.relation.urihttps://doi.org/10.1029/2018EO104623
dc.relation.urihttp://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf
dc.relation.urihttp://wwwgpsg.mit.edu/simon/gtgk/GLOBK.pdf
dc.relation.urihttps://doi.org/10.1016/j.asr.2018.11.022
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.subjectсередній рівень моря
dc.subjectмареограф
dc.subjectсупутникові GNSS-спостереження
dc.subjectmean sea level
dc.subjecttide gauge
dc.subjectsatellite GNSS observations
dc.titleAbsolute sea level changes at the tide gauge station in Władysławowo using different time series software packages
dc.title.alternativeЗміни абсолютного рівня моря на мареографічній станції у Владиславові на основі даних часових рядів з використанням різних пакетів програмного забезпечення
dc.typeArticle

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.01 KB
Format:
Plain Text
Description: