Formation and properties of cross-linked polymer films based on biocompatible polymers

dc.citation.epage166
dc.citation.issue2
dc.citation.spage157
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШевчук, О. М.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorЧобіт, М. Р.
dc.contributor.authorТокарев, В. С.
dc.contributor.authorShevchuk, O. M.
dc.contributor.authorBukartyk, N. M.
dc.contributor.authorChobit, M. R.
dc.contributor.authorTokarev, V. S.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:12Z
dc.date.available2024-01-22T08:47:12Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractСтруктуровані полімерні плівки на основі полівінілового спирту та поліакриламіду отримані за допомогою радикального структурування, ініційованого пероксидовмісними реакційноздатними кополімерами. Досліджено вплив температури, природи і концентрації зшивальних агентів на величину гель-фракції та властивості отриманих плівок. Отримані структуровані нанокомпозитні плівки характеризуються покращеними фізико-механічними властивостями, що залежать від вмісту пероксидвмісного кополімеру та присутності додаткового зшиваючого агента.
dc.description.abstractCross-linked polymer films based on polyvinyl alcohol and polyacrylamide have been prepared via radical cross-linking initiated by peroxide containing reactive copolymers. The influence of temperature, nature and concentration of cross-linking agents onto gel-fraction value and properties of polymer films has been studied. Obtained cross-linked polymer films are characterized by improved physico-mechanical properties that depend on the content of peroxide containing copolymer and on the presence of additional cross-linking agent.
dc.format.extent157-166
dc.format.pages10
dc.identifier.citationFormation and properties of cross-linked polymer films based on biocompatible polymers / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 157–166.
dc.identifier.citationenFormation and properties of cross-linked polymer films based on biocompatible polymers / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 157–166.
dc.identifier.doidoi.org/10.23939/ctas2021.02.157
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60892
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. Stridsberg K. M., Ryner M. Albertsson A. C. (2002) Controlled ring-opening polymerization: Polymers with designed macromolecular architecture // Advanced Polymer Science, 157, 41–65.
dc.relation.references2. Kricheldorf H. R. (2004). Biodegradable polymers with variable architectures via ring-expansion polymerization. Journal of Polymer Science, Part A, 42, 4723–4742.
dc.relation.references3. Wee Y. J., Kim J. N., Ryu H. W. (2006) Biotechnological production of lactic acid and its recent applications // Food Technology and Biotechnology, 44, 163–172.
dc.relation.references4. Kim M. J., Koh Y. H. (2013) Synthesis of aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres. Material Science and Engineering: C, 33(4), 2266–2272.
dc.relation.references5. Jin С., Liang B., Li J., Li F. (2013) Biodegradation behaviors of poly(p-dioxanone) in different environment media // Journal of Polymers and the Environment, 21, 1088–1099.
dc.relation.references6. Siracusa V., Lotti N., Munari A., Dalla Rosa, M. (2015) Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35–45.
dc.relation.references7. Zhang N., Pompe T., Amin I., Luxenhofer R., Werner C., Jordan R. (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromolecular bioscience, 12(7), 926–936.
dc.relation.references8. Singh G., Kumari A., Mittal A., Yadav A. (2013) Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. BioMed research international, 2013. Article ID 952641. 10 p.
dc.relation.references9. Shen X., Shamshina J. L., Berton P., Gurau G., Rogers R. D. (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 18. P. 53–75.
dc.relation.references10. Gupta P., Nayak K. K. (2015) Characteristics of protein-based biopolymer and its application. Polymer Engineering Science, 55, 485–498.
dc.relation.references11. George K. A., Chirila T. V., Wentrup-Byrne E. (2012) Effects of crosslink density on hydrolytic degradation of poly(L-lactide)-based networks. Polymer Degradation and Stability, 97(6), 964–971. doi: 10.1016/j.polymdegradstab.2012.03.017
dc.relation.references12. Mitra T., Sailakshmi G., Gnanamani, A., Mandal A. B. (2013) Studies on cross-linking of succinic acid with chitosan/collagen. Materials Research, 16(4), 755-765. doi: 10.1590/S1516-14392013005000059.
dc.relation.references13. Kuckling D., Doering A., Krahl F., Arndt K.-F. (2012) Stimuli-Responsive Polymer Systems. In: K. Matyjaszewski, M. Möller (Eds) Polymer Science: A Comprehensive Reference (pp. 377–413). Elsevier B. V.: Amsterdam
dc.relation.references14. Thakur G., Rodrigues F. C., Singh K. (2018) Crosslinking biopolymers for advanced drug delivery and tissue engineering applications. In: Chun H. J., Park C. H., Kwon I. K., Khang G. (Eds) Cutting-Edge Enabling Technologies for Regenerative Medicine (pp. 213–231). Springer: Singapour.
dc.relation.references15. Jiang Q. Reddy N., Zhang S. (2013) Water stable electrospun collagen fibers from a non-toxic solvent and crosslinking system // J. Biomedical Materials Research Part A, 101A, 1237–1247.
dc.relation.references16. Bajpai S. K., Saxena S. K., Sharma S. (2006) Swelling behavior of barium ions crosslinked bipolymeric sodium alginate–carboxymethyl guargum blend beads. Reactive Functional Polymers, 66, 659–666.
dc.relation.references17. Borova S., Tokarev V., Stahlhut P., Luxenhofer R. (2020) Crosslinking of hydrophilic polymers using polyperoxides. Colloid and Polymer Science, 298, 1699–1713.
dc.relation.references18. Shevchuk O. M., Bukartyk N. M., Chobit M. R., Nadashkevych Z. Ya., Tokarev V. S. (2018) The peculiarities of formation of cross-linked poly(2-ethyl-2-oxazoline) films and nanocomposites on their base. Chemistry, Technology and Application of Substances, 3(2), 180–186.
dc.relation.references19. Tokarev V., Shevchuk О., Ilchuk H., Tokarev S., Kusnezh V., Korbutyak D., Kalytchuk S., Bukartyk N. (2015) Thin polymer films with embedded CdS nanocrystals // Colloid and Polymer Science, 293, (1159–1169).
dc.relation.references20. Serdiuk V. O., Shevchuk O. M., Pereviznyk O. B., Bukartyk N. M., Tokarev V. S. (2018) Reactive peroxide macroinitiator for cross-linking biocompatible polymers. Bulletin of Lviv Polytechnic National University, 886, 226–235.
dc.relation.references21. Vasilyev V. P., Glus L. S., Gubar S. P. (1985) Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26.
dc.relation.references22. Toropceva A. M., Belogorodskaya K. V., Bondarenko V. M. (1972) Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
dc.relation.references23. Katime I., Mendizabal E. (2010) Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1,4-dioic acid monomers in aqueous solutions. Material Science & Application, 1, 162–167.
dc.relation.references24. Ramsden D. K., Kay K. Mc. (1986) Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I – Fenton's reagent // Polymer Degradation and Stability, 14(3), 217–229.
dc.relation.references25. Guezennec A.-G., Michel C., Bru K., Touze S., Desroche N., Mnif I., Motelica-Heino M. (2015) Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review. Environmental Science and Pollution Research, 22(9), 6390–6406.
dc.relation.references26. Ahmed E. M. (2015) Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105–121.
dc.relation.referencesen1. Stridsberg K. M., Ryner M. Albertsson A. C. (2002) Controlled ring-opening polymerization: Polymers with designed macromolecular architecture, Advanced Polymer Science, 157, 41–65.
dc.relation.referencesen2. Kricheldorf H. R. (2004). Biodegradable polymers with variable architectures via ring-expansion polymerization. Journal of Polymer Science, Part A, 42, 4723–4742.
dc.relation.referencesen3. Wee Y. J., Kim J. N., Ryu H. W. (2006) Biotechnological production of lactic acid and its recent applications, Food Technology and Biotechnology, 44, 163–172.
dc.relation.referencesen4. Kim M. J., Koh Y. H. (2013) Synthesis of aligned porous poly(e-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres. Material Science and Engineering: C, 33(4), 2266–2272.
dc.relation.referencesen5. Jin S., Liang B., Li J., Li F. (2013) Biodegradation behaviors of poly(p-dioxanone) in different environment media, Journal of Polymers and the Environment, 21, 1088–1099.
dc.relation.referencesen6. Siracusa V., Lotti N., Munari A., Dalla Rosa, M. (2015) Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35–45.
dc.relation.referencesen7. Zhang N., Pompe T., Amin I., Luxenhofer R., Werner C., Jordan R. (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromolecular bioscience, 12(7), 926–936.
dc.relation.referencesen8. Singh G., Kumari A., Mittal A., Yadav A. (2013) Poly b-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. BioMed research international, 2013. Article ID 952641. 10 p.
dc.relation.referencesen9. Shen X., Shamshina J. L., Berton P., Gurau G., Rogers R. D. (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 18. P. 53–75.
dc.relation.referencesen10. Gupta P., Nayak K. K. (2015) Characteristics of protein-based biopolymer and its application. Polymer Engineering Science, 55, 485–498.
dc.relation.referencesen11. George K. A., Chirila T. V., Wentrup-Byrne E. (2012) Effects of crosslink density on hydrolytic degradation of poly(L-lactide)-based networks. Polymer Degradation and Stability, 97(6), 964–971. doi: 10.1016/j.polymdegradstab.2012.03.017
dc.relation.referencesen12. Mitra T., Sailakshmi G., Gnanamani, A., Mandal A. B. (2013) Studies on cross-linking of succinic acid with chitosan/collagen. Materials Research, 16(4), 755-765. doi: 10.1590/S1516-14392013005000059.
dc.relation.referencesen13. Kuckling D., Doering A., Krahl F., Arndt K.-F. (2012) Stimuli-Responsive Polymer Systems. In: K. Matyjaszewski, M. Möller (Eds) Polymer Science: A Comprehensive Reference (pp. 377–413). Elsevier B. V., Amsterdam
dc.relation.referencesen14. Thakur G., Rodrigues F. C., Singh K. (2018) Crosslinking biopolymers for advanced drug delivery and tissue engineering applications. In: Chun H. J., Park C. H., Kwon I. K., Khang G. (Eds) Cutting-Edge Enabling Technologies for Regenerative Medicine (pp. 213–231). Springer: Singapour.
dc.relation.referencesen15. Jiang Q. Reddy N., Zhang S. (2013) Water stable electrospun collagen fibers from a non-toxic solvent and crosslinking system, J. Biomedical Materials Research Part A, 101A, 1237–1247.
dc.relation.referencesen16. Bajpai S. K., Saxena S. K., Sharma S. (2006) Swelling behavior of barium ions crosslinked bipolymeric sodium alginate–carboxymethyl guargum blend beads. Reactive Functional Polymers, 66, 659–666.
dc.relation.referencesen17. Borova S., Tokarev V., Stahlhut P., Luxenhofer R. (2020) Crosslinking of hydrophilic polymers using polyperoxides. Colloid and Polymer Science, 298, 1699–1713.
dc.relation.referencesen18. Shevchuk O. M., Bukartyk N. M., Chobit M. R., Nadashkevych Z. Ya., Tokarev V. S. (2018) The peculiarities of formation of cross-linked poly(2-ethyl-2-oxazoline) films and nanocomposites on their base. Chemistry, Technology and Application of Substances, 3(2), 180–186.
dc.relation.referencesen19. Tokarev V., Shevchuk O., Ilchuk H., Tokarev S., Kusnezh V., Korbutyak D., Kalytchuk S., Bukartyk N. (2015) Thin polymer films with embedded CdS nanocrystals, Colloid and Polymer Science, 293, (1159–1169).
dc.relation.referencesen20. Serdiuk V. O., Shevchuk O. M., Pereviznyk O. B., Bukartyk N. M., Tokarev V. S. (2018) Reactive peroxide macroinitiator for cross-linking biocompatible polymers. Bulletin of Lviv Polytechnic National University, 886, 226–235.
dc.relation.referencesen21. Vasilyev V. P., Glus L. S., Gubar S. P. (1985) Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26.
dc.relation.referencesen22. Toropceva A. M., Belogorodskaya K. V., Bondarenko V. M. (1972) Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
dc.relation.referencesen23. Katime I., Mendizabal E. (2010) Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1,4-dioic acid monomers in aqueous solutions. Material Science & Application, 1, 162–167.
dc.relation.referencesen24. Ramsden D. K., Kay K. Mc. (1986) Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I – Fenton's reagent, Polymer Degradation and Stability, 14(3), 217–229.
dc.relation.referencesen25. Guezennec A.-G., Michel C., Bru K., Touze S., Desroche N., Mnif I., Motelica-Heino M. (2015) Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review. Environmental Science and Pollution Research, 22(9), 6390–6406.
dc.relation.referencesen26. Ahmed E. M. (2015) Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105–121.
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectполівініловий спирт
dc.subjectполіакриламід
dc.subjectполімерні плівки
dc.subjectструктурування
dc.subjectфізико-механічні властивості
dc.subjectpolyvinyl alcohol
dc.subjectpolyacrylamide
dc.subjectpolymer films
dc.subjectcross-linking
dc.subjectphysicomechanical properties
dc.titleFormation and properties of cross-linked polymer films based on biocompatible polymers
dc.title.alternativeФормування та властивості структурованих полімерних плівок на основі біосумісних полімерів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n2_Shevchuk_O_M-Formation_and_properties_157-166.pdf
Size:
804.44 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n2_Shevchuk_O_M-Formation_and_properties_157-166__COVER.png
Size:
458.85 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: