Formation and properties of cross-linked polymer films based on biocompatible polymers
dc.citation.epage | 166 | |
dc.citation.issue | 2 | |
dc.citation.spage | 157 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Шевчук, О. М. | |
dc.contributor.author | Букартик, Н. М. | |
dc.contributor.author | Чобіт, М. Р. | |
dc.contributor.author | Токарев, В. С. | |
dc.contributor.author | Shevchuk, O. M. | |
dc.contributor.author | Bukartyk, N. M. | |
dc.contributor.author | Chobit, M. R. | |
dc.contributor.author | Tokarev, V. S. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:47:12Z | |
dc.date.available | 2024-01-22T08:47:12Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Структуровані полімерні плівки на основі полівінілового спирту та поліакриламіду отримані за допомогою радикального структурування, ініційованого пероксидовмісними реакційноздатними кополімерами. Досліджено вплив температури, природи і концентрації зшивальних агентів на величину гель-фракції та властивості отриманих плівок. Отримані структуровані нанокомпозитні плівки характеризуються покращеними фізико-механічними властивостями, що залежать від вмісту пероксидвмісного кополімеру та присутності додаткового зшиваючого агента. | |
dc.description.abstract | Cross-linked polymer films based on polyvinyl alcohol and polyacrylamide have been prepared via radical cross-linking initiated by peroxide containing reactive copolymers. The influence of temperature, nature and concentration of cross-linking agents onto gel-fraction value and properties of polymer films has been studied. Obtained cross-linked polymer films are characterized by improved physico-mechanical properties that depend on the content of peroxide containing copolymer and on the presence of additional cross-linking agent. | |
dc.format.extent | 157-166 | |
dc.format.pages | 10 | |
dc.identifier.citation | Formation and properties of cross-linked polymer films based on biocompatible polymers / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 157–166. | |
dc.identifier.citationen | Formation and properties of cross-linked polymer films based on biocompatible polymers / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 157–166. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.02.157 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60892 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (4), 2021 | |
dc.relation.references | 1. Stridsberg K. M., Ryner M. Albertsson A. C. (2002) Controlled ring-opening polymerization: Polymers with designed macromolecular architecture // Advanced Polymer Science, 157, 41–65. | |
dc.relation.references | 2. Kricheldorf H. R. (2004). Biodegradable polymers with variable architectures via ring-expansion polymerization. Journal of Polymer Science, Part A, 42, 4723–4742. | |
dc.relation.references | 3. Wee Y. J., Kim J. N., Ryu H. W. (2006) Biotechnological production of lactic acid and its recent applications // Food Technology and Biotechnology, 44, 163–172. | |
dc.relation.references | 4. Kim M. J., Koh Y. H. (2013) Synthesis of aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres. Material Science and Engineering: C, 33(4), 2266–2272. | |
dc.relation.references | 5. Jin С., Liang B., Li J., Li F. (2013) Biodegradation behaviors of poly(p-dioxanone) in different environment media // Journal of Polymers and the Environment, 21, 1088–1099. | |
dc.relation.references | 6. Siracusa V., Lotti N., Munari A., Dalla Rosa, M. (2015) Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35–45. | |
dc.relation.references | 7. Zhang N., Pompe T., Amin I., Luxenhofer R., Werner C., Jordan R. (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromolecular bioscience, 12(7), 926–936. | |
dc.relation.references | 8. Singh G., Kumari A., Mittal A., Yadav A. (2013) Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. BioMed research international, 2013. Article ID 952641. 10 p. | |
dc.relation.references | 9. Shen X., Shamshina J. L., Berton P., Gurau G., Rogers R. D. (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 18. P. 53–75. | |
dc.relation.references | 10. Gupta P., Nayak K. K. (2015) Characteristics of protein-based biopolymer and its application. Polymer Engineering Science, 55, 485–498. | |
dc.relation.references | 11. George K. A., Chirila T. V., Wentrup-Byrne E. (2012) Effects of crosslink density on hydrolytic degradation of poly(L-lactide)-based networks. Polymer Degradation and Stability, 97(6), 964–971. doi: 10.1016/j.polymdegradstab.2012.03.017 | |
dc.relation.references | 12. Mitra T., Sailakshmi G., Gnanamani, A., Mandal A. B. (2013) Studies on cross-linking of succinic acid with chitosan/collagen. Materials Research, 16(4), 755-765. doi: 10.1590/S1516-14392013005000059. | |
dc.relation.references | 13. Kuckling D., Doering A., Krahl F., Arndt K.-F. (2012) Stimuli-Responsive Polymer Systems. In: K. Matyjaszewski, M. Möller (Eds) Polymer Science: A Comprehensive Reference (pp. 377–413). Elsevier B. V.: Amsterdam | |
dc.relation.references | 14. Thakur G., Rodrigues F. C., Singh K. (2018) Crosslinking biopolymers for advanced drug delivery and tissue engineering applications. In: Chun H. J., Park C. H., Kwon I. K., Khang G. (Eds) Cutting-Edge Enabling Technologies for Regenerative Medicine (pp. 213–231). Springer: Singapour. | |
dc.relation.references | 15. Jiang Q. Reddy N., Zhang S. (2013) Water stable electrospun collagen fibers from a non-toxic solvent and crosslinking system // J. Biomedical Materials Research Part A, 101A, 1237–1247. | |
dc.relation.references | 16. Bajpai S. K., Saxena S. K., Sharma S. (2006) Swelling behavior of barium ions crosslinked bipolymeric sodium alginate–carboxymethyl guargum blend beads. Reactive Functional Polymers, 66, 659–666. | |
dc.relation.references | 17. Borova S., Tokarev V., Stahlhut P., Luxenhofer R. (2020) Crosslinking of hydrophilic polymers using polyperoxides. Colloid and Polymer Science, 298, 1699–1713. | |
dc.relation.references | 18. Shevchuk O. M., Bukartyk N. M., Chobit M. R., Nadashkevych Z. Ya., Tokarev V. S. (2018) The peculiarities of formation of cross-linked poly(2-ethyl-2-oxazoline) films and nanocomposites on their base. Chemistry, Technology and Application of Substances, 3(2), 180–186. | |
dc.relation.references | 19. Tokarev V., Shevchuk О., Ilchuk H., Tokarev S., Kusnezh V., Korbutyak D., Kalytchuk S., Bukartyk N. (2015) Thin polymer films with embedded CdS nanocrystals // Colloid and Polymer Science, 293, (1159–1169). | |
dc.relation.references | 20. Serdiuk V. O., Shevchuk O. M., Pereviznyk O. B., Bukartyk N. M., Tokarev V. S. (2018) Reactive peroxide macroinitiator for cross-linking biocompatible polymers. Bulletin of Lviv Polytechnic National University, 886, 226–235. | |
dc.relation.references | 21. Vasilyev V. P., Glus L. S., Gubar S. P. (1985) Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26. | |
dc.relation.references | 22. Toropceva A. M., Belogorodskaya K. V., Bondarenko V. M. (1972) Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya. | |
dc.relation.references | 23. Katime I., Mendizabal E. (2010) Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1,4-dioic acid monomers in aqueous solutions. Material Science & Application, 1, 162–167. | |
dc.relation.references | 24. Ramsden D. K., Kay K. Mc. (1986) Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I – Fenton's reagent // Polymer Degradation and Stability, 14(3), 217–229. | |
dc.relation.references | 25. Guezennec A.-G., Michel C., Bru K., Touze S., Desroche N., Mnif I., Motelica-Heino M. (2015) Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review. Environmental Science and Pollution Research, 22(9), 6390–6406. | |
dc.relation.references | 26. Ahmed E. M. (2015) Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105–121. | |
dc.relation.referencesen | 1. Stridsberg K. M., Ryner M. Albertsson A. C. (2002) Controlled ring-opening polymerization: Polymers with designed macromolecular architecture, Advanced Polymer Science, 157, 41–65. | |
dc.relation.referencesen | 2. Kricheldorf H. R. (2004). Biodegradable polymers with variable architectures via ring-expansion polymerization. Journal of Polymer Science, Part A, 42, 4723–4742. | |
dc.relation.referencesen | 3. Wee Y. J., Kim J. N., Ryu H. W. (2006) Biotechnological production of lactic acid and its recent applications, Food Technology and Biotechnology, 44, 163–172. | |
dc.relation.referencesen | 4. Kim M. J., Koh Y. H. (2013) Synthesis of aligned porous poly(e-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres. Material Science and Engineering: C, 33(4), 2266–2272. | |
dc.relation.referencesen | 5. Jin S., Liang B., Li J., Li F. (2013) Biodegradation behaviors of poly(p-dioxanone) in different environment media, Journal of Polymers and the Environment, 21, 1088–1099. | |
dc.relation.referencesen | 6. Siracusa V., Lotti N., Munari A., Dalla Rosa, M. (2015) Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35–45. | |
dc.relation.referencesen | 7. Zhang N., Pompe T., Amin I., Luxenhofer R., Werner C., Jordan R. (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromolecular bioscience, 12(7), 926–936. | |
dc.relation.referencesen | 8. Singh G., Kumari A., Mittal A., Yadav A. (2013) Poly b-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. BioMed research international, 2013. Article ID 952641. 10 p. | |
dc.relation.referencesen | 9. Shen X., Shamshina J. L., Berton P., Gurau G., Rogers R. D. (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 18. P. 53–75. | |
dc.relation.referencesen | 10. Gupta P., Nayak K. K. (2015) Characteristics of protein-based biopolymer and its application. Polymer Engineering Science, 55, 485–498. | |
dc.relation.referencesen | 11. George K. A., Chirila T. V., Wentrup-Byrne E. (2012) Effects of crosslink density on hydrolytic degradation of poly(L-lactide)-based networks. Polymer Degradation and Stability, 97(6), 964–971. doi: 10.1016/j.polymdegradstab.2012.03.017 | |
dc.relation.referencesen | 12. Mitra T., Sailakshmi G., Gnanamani, A., Mandal A. B. (2013) Studies on cross-linking of succinic acid with chitosan/collagen. Materials Research, 16(4), 755-765. doi: 10.1590/S1516-14392013005000059. | |
dc.relation.referencesen | 13. Kuckling D., Doering A., Krahl F., Arndt K.-F. (2012) Stimuli-Responsive Polymer Systems. In: K. Matyjaszewski, M. Möller (Eds) Polymer Science: A Comprehensive Reference (pp. 377–413). Elsevier B. V., Amsterdam | |
dc.relation.referencesen | 14. Thakur G., Rodrigues F. C., Singh K. (2018) Crosslinking biopolymers for advanced drug delivery and tissue engineering applications. In: Chun H. J., Park C. H., Kwon I. K., Khang G. (Eds) Cutting-Edge Enabling Technologies for Regenerative Medicine (pp. 213–231). Springer: Singapour. | |
dc.relation.referencesen | 15. Jiang Q. Reddy N., Zhang S. (2013) Water stable electrospun collagen fibers from a non-toxic solvent and crosslinking system, J. Biomedical Materials Research Part A, 101A, 1237–1247. | |
dc.relation.referencesen | 16. Bajpai S. K., Saxena S. K., Sharma S. (2006) Swelling behavior of barium ions crosslinked bipolymeric sodium alginate–carboxymethyl guargum blend beads. Reactive Functional Polymers, 66, 659–666. | |
dc.relation.referencesen | 17. Borova S., Tokarev V., Stahlhut P., Luxenhofer R. (2020) Crosslinking of hydrophilic polymers using polyperoxides. Colloid and Polymer Science, 298, 1699–1713. | |
dc.relation.referencesen | 18. Shevchuk O. M., Bukartyk N. M., Chobit M. R., Nadashkevych Z. Ya., Tokarev V. S. (2018) The peculiarities of formation of cross-linked poly(2-ethyl-2-oxazoline) films and nanocomposites on their base. Chemistry, Technology and Application of Substances, 3(2), 180–186. | |
dc.relation.referencesen | 19. Tokarev V., Shevchuk O., Ilchuk H., Tokarev S., Kusnezh V., Korbutyak D., Kalytchuk S., Bukartyk N. (2015) Thin polymer films with embedded CdS nanocrystals, Colloid and Polymer Science, 293, (1159–1169). | |
dc.relation.referencesen | 20. Serdiuk V. O., Shevchuk O. M., Pereviznyk O. B., Bukartyk N. M., Tokarev V. S. (2018) Reactive peroxide macroinitiator for cross-linking biocompatible polymers. Bulletin of Lviv Polytechnic National University, 886, 226–235. | |
dc.relation.referencesen | 21. Vasilyev V. P., Glus L. S., Gubar S. P. (1985) Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26. | |
dc.relation.referencesen | 22. Toropceva A. M., Belogorodskaya K. V., Bondarenko V. M. (1972) Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya. | |
dc.relation.referencesen | 23. Katime I., Mendizabal E. (2010) Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1,4-dioic acid monomers in aqueous solutions. Material Science & Application, 1, 162–167. | |
dc.relation.referencesen | 24. Ramsden D. K., Kay K. Mc. (1986) Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I – Fenton's reagent, Polymer Degradation and Stability, 14(3), 217–229. | |
dc.relation.referencesen | 25. Guezennec A.-G., Michel C., Bru K., Touze S., Desroche N., Mnif I., Motelica-Heino M. (2015) Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review. Environmental Science and Pollution Research, 22(9), 6390–6406. | |
dc.relation.referencesen | 26. Ahmed E. M. (2015) Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105–121. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | полівініловий спирт | |
dc.subject | поліакриламід | |
dc.subject | полімерні плівки | |
dc.subject | структурування | |
dc.subject | фізико-механічні властивості | |
dc.subject | polyvinyl alcohol | |
dc.subject | polyacrylamide | |
dc.subject | polymer films | |
dc.subject | cross-linking | |
dc.subject | physicomechanical properties | |
dc.title | Formation and properties of cross-linked polymer films based on biocompatible polymers | |
dc.title.alternative | Формування та властивості структурованих полімерних плівок на основі біосумісних полімерів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1