Методи виправлення помилок у закодованих повідомленнях матрицями Фібоначчі

dc.citation.epage347
dc.citation.issue14
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі
dc.citation.spage327
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГрицюк, Павло
dc.contributor.authorСікора, Любомир
dc.contributor.authorГрицюк, Юрій
dc.contributor.authorGrytsiuk, Pavlo
dc.contributor.authorSikora, Lubomyr
dc.contributor.authorHrytsiuk, Yurii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:22:02Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПроаналізовано наявні методики виправлення помилок у закодованих повідомленнях матрицями Фібоначчі, що дають можливість знаходити і виправляти декілька помилок у кодових словах, отриманих каналами зв’язку. З’ясовано, що за останнє десятиліття опубліковано багато різноманітних робіт, у кожній з яких обґрунтовано доцільність використання матриць Фібоначчі для (де)кодування даних. Встановлено, що елементи кодового слова, одержаного множенням блока повідомлення на матрицю Фібоначчі, мають чимало корисних властивостей, на яких ґрунтується методика виявлення та виправлення у ньому помилок. Дослідники стверджують, що відношення відповідних елементів кодового слова наближене до золотого перерізу, й це має важливе значення для відомих методик виправлення потенційних помилок. Така властивість кодового слова дає можливість ідентифікувати наявність подвійних і потрійних помилкових елементів, перевіривши, чи належать їхні відношення до фіксованого інтервалу. Хибна належність, як виявилось, свідчить про те, що в різних рядках кодового слова є дві помилки, для виправлення яких потрібно розв’язати відповідні діофантові рівняння. Розв’язки цих рівнянь повинні задовольнити певні умови виправлення помилок. З’ясовано, що для виправлення двох помилок у одному рядку кодового слова ставлять умову, згідно з якою набір блоків вхідного повідомлення має містити тільки мінімальні матриці, що дає можливість брати найменші розв’язки діофантового рівняння, придатність яких уточнюють перевіряльними співвідношеннями. Виявлено, що для виправлення трьох помилок у кодовому слові потрібно перевірити приналежність фіксованому інтервалу відношень відповідних його елементів та розв’язати нелінійне діофантове рівняння, реалізація якого є надзвичайно складною. Запропонований підхід зводиться до проб і помилок: спочатку потрібно знайти точне місце розташування помилкових елементів, а вже потім їх виправляти за відповідними методиками.
dc.description.abstractThe main problems of detection and available methods of correcting errors in encoded messages with Fibonacci matrices, which make it possible to find and correct one, two and three errors in the same or different lines of the code word, are analyzed. It has been found that even in the last decade, many scientists have published a significant number of various publications, each of which to one degree or another substantiates the expediency of using Fibonacci matrices for (de)coding data. It has been established that the elements of a codeword obtained by multiplying a message block by a Fibonacci matrix have many useful properties, which are the basis for the method for detecting and correcting errors in them. The statement is given, according to which the ratio of the corresponding elements of the code word is close to the golden ratio, which is important for the existing methods of correcting potential errors. This property of the elements makes it possible to identify the presence of double and triple false elements by checking whether their ratios belong to a fixed interval. It is found that the false affiliation indicates that there are two errors in different lines of the codeword, which require solving the corresponding Diophantine equations, the suitability of the solution of which must satisfy certain conditions for error correction. It was found that in order to correct two errors in one line of the code word, a condition was introduced according to which the set of blocks of the input message should contain only minimal matrices, which makes it possible to take the smallest solutions of the Diophantine equation, the suitability of which is specified by test ratios. It was found that in order to correct three errors in a codeword, it is necessary to check whether the relations of its corresponding elements belong to a fixed interval and to solve a nonlinear Diophantine equation, the implementation of which is extremely difficult. The proposed approach boils down to trial and error, according to which you first need to find the exact location of the erroneous elements, and only then correct them according to the appropriate methods.
dc.format.extent327-347
dc.format.pages21
dc.identifier.citationГрицюк П. Методи виправлення помилок у закодованих повідомленнях матрицями Фібоначчі / Павло Грицюк, Любомир Сікора, Юрій Грицюк // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 14. — С. 327–347.
dc.identifier.citationenGrytsiuk P. Methods of correcting errors in messages encoded by Fibonacci matrices / Pavlo Grytsiuk, Lubomyr Sikora, Yurii Hrytsiuk // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 14. — P. 327–347.
dc.identifier.doidoi.org/10.23939/sisn2023.14.327
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111714
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 14, 2023
dc.relation.ispartofInformation Systems and Networks, 14, 2023
dc.relation.references1. Basu, M., & Prasad, B. (2011). Coding theory on the (m,t)-extension of the Fibonacci p-numbers. Discrete Mathematics, Algorithms and Applications, Vol. 3, 259–267. https://doi.org/10.1142/S1793830911001097
dc.relation.references2. Basu, Manjusri, & Das, Monojit. (2017). Coding theory on generalized Fibonacci n-step polynomials. Journal of Information and Optimization Sciences, Vol. 38, Issue 1, 83–131. https://doi.org/10.1080/02522667.2016.1160618
dc.relation.references3. Basu, Manjusri, & Prasad, Bandhu. (2009). The generalized relations among the code elements for Fibonacci coding theory. Chaos, Solitons, & Fractals, Vol. 41, Iss. 5(15), 2517–2525. https://doi.org/10.1016/j.chaos.2008.09.030
dc.relation.references4. Fibonacci Basu, Manjusri, & Prasad, Bandhu. (2009, November). Coding theory on the m-extension of the p-numbers. Chaos, Solitons, & Fractals, Vol. 42, Iss. 4, 30, 2522–2530. https://doi.org/10.1016/j.chaos.2009.03.197
dc.relation.references5. Bellini, Emanuele, Marcolla, Chiara, & Murru, Nadir. (2020, March). On the decoding of 1-Fibonacci error correcting codes. Discrete Mathematics, Algorithms and Applications, Vol. 13, No. 05, 2150056. https://doi.org/10.13140/RG.2.2.27280.97281; https://doi.org/10.1142/S1793830921500567
dc.relation.references6. Esmaeili, M., Esmaeili, M., & Gulliver, T. A. (2011). High-rate Fibonacci polynomial codes. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 1921-1924. https://doi.org/10.1109/ISIT.2011.6033886
dc.relation.references7. Esmaili, M., Moosavi, M., & Gulliver, T. A. (2017, January). A new class of Fibonacci sequence based error correcting codes. Cryptography and Communications, Vol. 9, 379–396. https://doi.org/10.1007/s12095-015-0178-x
dc.relation.references8. Esmaili, Mostafa, & Esmaeili, Morteza. (2010). A Fibonacci-polynomial based coding method with error detection and correction. Computers and Mathematics with Applications, 60, 2738–2752. https://doi.org/10.1016/j.camwa.2010.08.091
dc.relation.references9. Gryciuk, Yurij, Grytsyuk, Pavlo. (2015). Perfecting of the matrix Affine cryptosystem information security. Computer Science and Information Technologies: Proceedings of Xth International Scientific and Technical Conference (CSIT'2015), 14–17 September, 2015, 67–69. https://doi.org/10.1109/stc-csit.2015.7325433
dc.relation.references10. Grytsiuk, P. Yu., & Hrytsiuk, Yu. I. (2015). Peculiarities of the implementation of the matrix Athena cryptosystem of information protection. Scientific Bulletin of UNFU, 25(5), 346–356. URL: https://nv.nltu.edu.ua/index.php/journal/article/view/1092
dc.relation.references11. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2015). Implementation of cryptographic transformations using Fibonacci G(λ)-matrices. Mathematical and software support of intelligent systems: materials of the 13th International Scientific and Practical Conference, 53–54, November 18–20, 2015, Dnipropetrovsk, Ukraine. Dnipropetrovsk: Department of Dnipropetrovsk National University named after Olesya Honchara.
dc.relation.references12. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2015). Methods and means of generating Fibonacci Qp-matrices – keys for implementing cryptographic transformations. Scientific Bulletin of UNFU, 25(6), 334–351. URL: https://nv.nltu.edu.ua/index.php/journal/article/view/974
dc.relation.references13. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2016). Features of generating Fibonacci Qp-matrices – keys for implementing cryptographic transformations. Bulletin of the Lviv Polytechnic National University. Series: Computer Science and Information Technology, Vol. 843, 251–263. URL: https://vlp.com.ua/taxonomy/term/3448
dc.relation.references14. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2016). Features of generating Fibonacci Gp()-matrices for implementation of cryptographic transformations. Information extraction and processing: interdepartmental collection of scientific papers, 43(119), 86–95.
dc.relation.references15. Hrytsiuk, Yuriy, & Grytsyuk, Pavlo (2016). Generation of Fibonacci Qp()-matrices – keys for data encryption. Information protection and security of information systems: materials of the 5th International Scientific and Technical Conference, 39–40, June 02–03, 2016, Lviv, Ukraine. Lviv: Lviv Polytechnic State University.
dc.relation.references16. Hrytsiuk, Yuriy, Grytsyuk, Pavlo, Dyak, Tetiana, & Hrynyk, Heorhiy. (2019). Software Development Risk Modeling. IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2019), Vol. 2, 134–137, 17–20 September, Lviv, Ukraine. Lviv: Lviv Polytechnic National University, 206 p. https://doi.org/10.1109/stc-csit.2019.8929778
dc.relation.references17. Kuhapatanakul, K. (2015). The Lucas p-matrix. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2015.1026612
dc.relation.references18. Lagun, A. E., & Hrytsiuk, Yu. I. (2016). Information theory and coding. Tutorial. Lviv: SPOLOM Publishing House, 168 p.
dc.relation.references19. Nihal Tas, Sumeyra Ucar, Nihal Yilmaz Ozgur, & Oztunc Kaymak. (2018). A new coding/decoding algorithm using Fibonacci numbers. Discrete Mathematics, Algorithms and Applications, Vol. 10, No. 02, 1850028. https://doi.org/10.1142/S1793830918500283; https://doi.org/10.48550/arXiv.1712.02262
dc.relation.references20. Prasad, Bandhu. (2014). Coding theory on (h(x), g(y))-extension of Fibonacci p-numbers polynomials. Universal Journal of Computational Mathematics, Vol. 2(1), 6–10. https://doi.org/10.13189/ujcmj.2014.020102
dc.relation.references21. Prasad, Bandhu. (2014). High rates of Fibonacci polynomials coding theory. Discrete Mathematics, Algorithms and Applications, Vol. 06, No. 04, 1450053. https://doi.org/10.1142/S1793830914500530
dc.relation.references22. Prasad, Bandhu. (2016). Coding theory on Lucas p-numbers. Discrete Mathematics, Algorithms and Applications, Vol. 08, No. 04, 1650074. https://doi.org/10.1142/S1793830916500749
dc.relation.references23. Prasad, Bandhu. (2019). The generalized relations among the code elements for a new complex Fibonacci matrix. Discrete Mathematics, Algorithms and Applications, Vol. 11, No. 02, 1950026. https://doi.org/10.1142/S1793830919500265
dc.relation.references24. Samoilenko, M. I., & Ufimtseva, V. B. (2012). On the possibilities of using Fibonacci arithmetic to increase the efficiency of cryptographic transformations. Trinitarian Academy, 77–656. URL: http://www/trinitas/ru/rus/doc/0232/013a/02322115/htm. [In Russian].
dc.relation.references25. Samoilenko, N. I., & Ufimtseva, V. B. (2003). Properties of p-numbers and Stakhov n pQ-matrices in the ring of integers Z/(q). Radioelectronics and computer science. Kharkov: KNURE. No. 1, 111–115. URL: https://cyberleninka.ru/article/n/svoystva-r-chisel-i-qp-matrits-stahova-v-koltse-tselyh-chisel-z-q. [In Russian].
dc.relation.references26. Sentürk, G. Y., Gürses, N., & Yüce, S. (2022). Construction of dual-generalized complex Fibonacci and Lucas quaternions. Carpathian Mathematical Publications, 14(2), 406–418. https://doi.org/10.15330/cmp.14.2.406-418
dc.relation.references27. Sergio Falcon. (2017, Jan.-Feb.). On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. IOSR Journal of Mathematics (IOSR-JM), 13(01), 52–58. https://doi.org/10.9790/5728-1301035258
dc.relation.references28. Singh, Sweta, Kanwar, Neeraj, & Zindani, Divya. (2023, April). Linear diophantine uncertain linguistic based prospect theory approach for performance evaluation of islanded microgrid-system scenarios. Clean Energy, Vol. 7, Iss. 2, 263–282. https://doi.org/10.1093/ce/zkac066
dc.relation.references29. Skuratovsky, R. V. (2017). Factorization of an integer of the form n = pq. Mathematical and computer modeling. Series: Physical and mathematical sciences: collection of scientific papers. Kamianets-Podilskyi National University. Vol. 15, 201–207. URI: http://dspace.nbuv.gov.ua/handle/123456789/133957
dc.relation.references30. Slyusarenko, V. (2008). Fibonacci numbers and the golden ratio. Mathematics. Kyiv: School World Publishing House, No. 8(452), 18–24.
dc.relation.references31. Slyusarenko, V. (2008). Fibonacci numbers and the golden ratio. Math. Kyiv: School World Publishing House, No. 8(452), 18–24.
dc.relation.references32. Stakhov, A. P. (2006, October). Fibonacci matrices, a generalization of the “Cassini formula”, and a new coding theory. Chaos, Solitons, & Fractals, Vol. 30, Iss. 1, 56–66. https://doi.org/10.1016/j.chaos.2005.12.054
dc.relation.references33. Stakhov, Alexey, & Olsen, Scott. (2009). The Mathematics of Harmony: From Euclid to Contemporary Mathematics and Computer Science. Series on Knots and Everything, 22. World Scientific Publishing Company; First Edition, 748 p. URL: https://www.amazon.com/Mathematics-Harmony-Contemporary-Computer-Everything/dp/981277582X
dc.relation.references34. Sundarayya, P., & Prasad, M. G. Vara. (2019). Coding theory on Pell-Lucas p-numbers. Journal of Physics: Conference Series, 1344. https://doi.org/10.1088/1742-6596/1344/1/012017
dc.relation.references35. Ufimtseva, V. B., & Karpenko, N. Yu. (2015). Using sequences of generalized Fibonacci numbers in cryptographic algorithms. Information processing systems. Vol. 8, 106–110. URL: http://nbuv.gov.ua/UJRN/soi_2015_8_24. [In Russian].
dc.relation.references36. Ufimtseva, Victoria (2005). On the possibilities of using Fibonacci arithmetic to increase the efficiency of cryptographic transformations. Legal, regulatory and metrological support of the information protection system in Ukraine: scientific and technical collection. Vol. 10, 137–142. URL: https://ela.kpi.ua/handle/123456789/11453. [In Russian].
dc.relation.referencesen1. Basu, M., & Prasad, B. (2011). Coding theory on the (m,t)-extension of the Fibonacci p-numbers. Discrete Mathematics, Algorithms and Applications, Vol. 3, 259–267. https://doi.org/10.1142/S1793830911001097
dc.relation.referencesen2. Basu, Manjusri, & Das, Monojit. (2017). Coding theory on generalized Fibonacci n-step polynomials. Journal of Information and Optimization Sciences, Vol. 38, Issue 1, 83–131. https://doi.org/10.1080/02522667.2016.1160618
dc.relation.referencesen3. Basu, Manjusri, & Prasad, Bandhu. (2009). The generalized relations among the code elements for Fibonacci coding theory. Chaos, Solitons, & Fractals, Vol. 41, Iss. 5(15), 2517–2525. https://doi.org/10.1016/j.chaos.2008.09.030
dc.relation.referencesen4. Fibonacci Basu, Manjusri, & Prasad, Bandhu. (2009, November). Coding theory on the m-extension of the p-numbers. Chaos, Solitons, & Fractals, Vol. 42, Iss. 4, 30, 2522–2530. https://doi.org/10.1016/j.chaos.2009.03.197
dc.relation.referencesen5. Bellini, Emanuele, Marcolla, Chiara, & Murru, Nadir. (2020, March). On the decoding of 1-Fibonacci error correcting codes. Discrete Mathematics, Algorithms and Applications, Vol. 13, No. 05, 2150056. https://doi.org/10.13140/RG.2.2.27280.97281; https://doi.org/10.1142/S1793830921500567
dc.relation.referencesen6. Esmaeili, M., Esmaeili, M., & Gulliver, T. A. (2011). High-rate Fibonacci polynomial codes. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 1921-1924. https://doi.org/10.1109/ISIT.2011.6033886
dc.relation.referencesen7. Esmaili, M., Moosavi, M., & Gulliver, T. A. (2017, January). A new class of Fibonacci sequence based error correcting codes. Cryptography and Communications, Vol. 9, 379–396. https://doi.org/10.1007/s12095-015-0178-x
dc.relation.referencesen8. Esmaili, Mostafa, & Esmaeili, Morteza. (2010). A Fibonacci-polynomial based coding method with error detection and correction. Computers and Mathematics with Applications, 60, 2738–2752. https://doi.org/10.1016/j.camwa.2010.08.091
dc.relation.referencesen9. Gryciuk, Yurij, Grytsyuk, Pavlo. (2015). Perfecting of the matrix Affine cryptosystem information security. Computer Science and Information Technologies: Proceedings of Xth International Scientific and Technical Conference (CSIT'2015), 14–17 September, 2015, 67–69. https://doi.org/10.1109/stc-csit.2015.7325433
dc.relation.referencesen10. Grytsiuk, P. Yu., & Hrytsiuk, Yu. I. (2015). Peculiarities of the implementation of the matrix Athena cryptosystem of information protection. Scientific Bulletin of UNFU, 25(5), 346–356. URL: https://nv.nltu.edu.ua/index.php/journal/article/view/1092
dc.relation.referencesen11. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2015). Implementation of cryptographic transformations using Fibonacci G(l)-matrices. Mathematical and software support of intelligent systems: materials of the 13th International Scientific and Practical Conference, 53–54, November 18–20, 2015, Dnipropetrovsk, Ukraine. Dnipropetrovsk: Department of Dnipropetrovsk National University named after Olesya Honchara.
dc.relation.referencesen12. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2015). Methods and means of generating Fibonacci Qp-matrices – keys for implementing cryptographic transformations. Scientific Bulletin of UNFU, 25(6), 334–351. URL: https://nv.nltu.edu.ua/index.php/journal/article/view/974
dc.relation.referencesen13. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2016). Features of generating Fibonacci Qp-matrices – keys for implementing cryptographic transformations. Bulletin of the Lviv Polytechnic National University. Series: Computer Science and Information Technology, Vol. 843, 251–263. URL: https://vlp.com.ua/taxonomy/term/3448
dc.relation.referencesen14. Hrytsiuk, Yu. I., & Grytsiuk, P. Yu. (2016). Features of generating Fibonacci Gp()-matrices for implementation of cryptographic transformations. Information extraction and processing: interdepartmental collection of scientific papers, 43(119), 86–95.
dc.relation.referencesen15. Hrytsiuk, Yuriy, & Grytsyuk, Pavlo (2016). Generation of Fibonacci Qp()-matrices – keys for data encryption. Information protection and security of information systems: materials of the 5th International Scientific and Technical Conference, 39–40, June 02–03, 2016, Lviv, Ukraine. Lviv: Lviv Polytechnic State University.
dc.relation.referencesen16. Hrytsiuk, Yuriy, Grytsyuk, Pavlo, Dyak, Tetiana, & Hrynyk, Heorhiy. (2019). Software Development Risk Modeling. IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2019), Vol. 2, 134–137, 17–20 September, Lviv, Ukraine. Lviv: Lviv Polytechnic National University, 206 p. https://doi.org/10.1109/stc-csit.2019.8929778
dc.relation.referencesen17. Kuhapatanakul, K. (2015). The Lucas p-matrix. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2015.1026612
dc.relation.referencesen18. Lagun, A. E., & Hrytsiuk, Yu. I. (2016). Information theory and coding. Tutorial. Lviv: SPOLOM Publishing House, 168 p.
dc.relation.referencesen19. Nihal Tas, Sumeyra Ucar, Nihal Yilmaz Ozgur, & Oztunc Kaymak. (2018). A new coding/decoding algorithm using Fibonacci numbers. Discrete Mathematics, Algorithms and Applications, Vol. 10, No. 02, 1850028. https://doi.org/10.1142/S1793830918500283; https://doi.org/10.48550/arXiv.1712.02262
dc.relation.referencesen20. Prasad, Bandhu. (2014). Coding theory on (h(x), g(y))-extension of Fibonacci p-numbers polynomials. Universal Journal of Computational Mathematics, Vol. 2(1), 6–10. https://doi.org/10.13189/ujcmj.2014.020102
dc.relation.referencesen21. Prasad, Bandhu. (2014). High rates of Fibonacci polynomials coding theory. Discrete Mathematics, Algorithms and Applications, Vol. 06, No. 04, 1450053. https://doi.org/10.1142/S1793830914500530
dc.relation.referencesen22. Prasad, Bandhu. (2016). Coding theory on Lucas p-numbers. Discrete Mathematics, Algorithms and Applications, Vol. 08, No. 04, 1650074. https://doi.org/10.1142/S1793830916500749
dc.relation.referencesen23. Prasad, Bandhu. (2019). The generalized relations among the code elements for a new complex Fibonacci matrix. Discrete Mathematics, Algorithms and Applications, Vol. 11, No. 02, 1950026. https://doi.org/10.1142/S1793830919500265
dc.relation.referencesen24. Samoilenko, M. I., & Ufimtseva, V. B. (2012). On the possibilities of using Fibonacci arithmetic to increase the efficiency of cryptographic transformations. Trinitarian Academy, 77–656. URL: http://www/trinitas/ru/rus/doc/0232/013a/02322115/htm. [In Russian].
dc.relation.referencesen25. Samoilenko, N. I., & Ufimtseva, V. B. (2003). Properties of p-numbers and Stakhov n pQ-matrices in the ring of integers Z/(q). Radioelectronics and computer science. Kharkov: KNURE. No. 1, 111–115. URL: https://cyberleninka.ru/article/n/svoystva-r-chisel-i-qp-matrits-stahova-v-koltse-tselyh-chisel-z-q. [In Russian].
dc.relation.referencesen26. Sentürk, G. Y., Gürses, N., & Yüce, S. (2022). Construction of dual-generalized complex Fibonacci and Lucas quaternions. Carpathian Mathematical Publications, 14(2), 406–418. https://doi.org/10.15330/cmp.14.2.406-418
dc.relation.referencesen27. Sergio Falcon. (2017, Jan.-Feb.). On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. IOSR Journal of Mathematics (IOSR-JM), 13(01), 52–58. https://doi.org/10.9790/5728-1301035258
dc.relation.referencesen28. Singh, Sweta, Kanwar, Neeraj, & Zindani, Divya. (2023, April). Linear diophantine uncertain linguistic based prospect theory approach for performance evaluation of islanded microgrid-system scenarios. Clean Energy, Vol. 7, Iss. 2, 263–282. https://doi.org/10.1093/ce/zkac066
dc.relation.referencesen29. Skuratovsky, R. V. (2017). Factorization of an integer of the form n = pq. Mathematical and computer modeling. Series: Physical and mathematical sciences: collection of scientific papers. Kamianets-Podilskyi National University. Vol. 15, 201–207. URI: http://dspace.nbuv.gov.ua/handle/123456789/133957
dc.relation.referencesen30. Slyusarenko, V. (2008). Fibonacci numbers and the golden ratio. Mathematics. Kyiv: School World Publishing House, No. 8(452), 18–24.
dc.relation.referencesen31. Slyusarenko, V. (2008). Fibonacci numbers and the golden ratio. Math. Kyiv: School World Publishing House, No. 8(452), 18–24.
dc.relation.referencesen32. Stakhov, A. P. (2006, October). Fibonacci matrices, a generalization of the "Cassini formula", and a new coding theory. Chaos, Solitons, & Fractals, Vol. 30, Iss. 1, 56–66. https://doi.org/10.1016/j.chaos.2005.12.054
dc.relation.referencesen33. Stakhov, Alexey, & Olsen, Scott. (2009). The Mathematics of Harmony: From Euclid to Contemporary Mathematics and Computer Science. Series on Knots and Everything, 22. World Scientific Publishing Company; First Edition, 748 p. URL: https://www.amazon.com/Mathematics-Harmony-Contemporary-Computer-Everything/dp/981277582X
dc.relation.referencesen34. Sundarayya, P., & Prasad, M. G. Vara. (2019). Coding theory on Pell-Lucas p-numbers. Journal of Physics: Conference Series, 1344. https://doi.org/10.1088/1742-6596/1344/1/012017
dc.relation.referencesen35. Ufimtseva, V. B., & Karpenko, N. Yu. (2015). Using sequences of generalized Fibonacci numbers in cryptographic algorithms. Information processing systems. Vol. 8, 106–110. URL: http://nbuv.gov.ua/UJRN/soi_2015_8_24. [In Russian].
dc.relation.referencesen36. Ufimtseva, Victoria (2005). On the possibilities of using Fibonacci arithmetic to increase the efficiency of cryptographic transformations. Legal, regulatory and metrological support of the information protection system in Ukraine: scientific and technical collection. Vol. 10, 137–142. URL: https://ela.kpi.ua/handle/123456789/11453. [In Russian].
dc.relation.urihttps://doi.org/10.1142/S1793830911001097
dc.relation.urihttps://doi.org/10.1080/02522667.2016.1160618
dc.relation.urihttps://doi.org/10.1016/j.chaos.2008.09.030
dc.relation.urihttps://doi.org/10.1016/j.chaos.2009.03.197
dc.relation.urihttps://doi.org/10.13140/RG.2.2.27280.97281;
dc.relation.urihttps://doi.org/10.1142/S1793830921500567
dc.relation.urihttps://doi.org/10.1109/ISIT.2011.6033886
dc.relation.urihttps://doi.org/10.1007/s12095-015-0178-x
dc.relation.urihttps://doi.org/10.1016/j.camwa.2010.08.091
dc.relation.urihttps://doi.org/10.1109/stc-csit.2015.7325433
dc.relation.urihttps://nv.nltu.edu.ua/index.php/journal/article/view/1092
dc.relation.urihttps://nv.nltu.edu.ua/index.php/journal/article/view/974
dc.relation.urihttps://vlp.com.ua/taxonomy/term/3448
dc.relation.urihttps://doi.org/10.1109/stc-csit.2019.8929778
dc.relation.urihttps://doi.org/10.1080/0020739X.2015.1026612
dc.relation.urihttps://doi.org/10.1142/S1793830918500283;
dc.relation.urihttps://doi.org/10.48550/arXiv.1712.02262
dc.relation.urihttps://doi.org/10.13189/ujcmj.2014.020102
dc.relation.urihttps://doi.org/10.1142/S1793830914500530
dc.relation.urihttps://doi.org/10.1142/S1793830916500749
dc.relation.urihttps://doi.org/10.1142/S1793830919500265
dc.relation.urihttp://www/trinitas/ru/rus/doc/0232/013a/02322115/htm
dc.relation.urihttps://cyberleninka.ru/article/n/svoystva-r-chisel-i-qp-matrits-stahova-v-koltse-tselyh-chisel-z-q
dc.relation.urihttps://doi.org/10.15330/cmp.14.2.406-418
dc.relation.urihttps://doi.org/10.9790/5728-1301035258
dc.relation.urihttps://doi.org/10.1093/ce/zkac066
dc.relation.urihttp://dspace.nbuv.gov.ua/handle/123456789/133957
dc.relation.urihttps://doi.org/10.1016/j.chaos.2005.12.054
dc.relation.urihttps://www.amazon.com/Mathematics-Harmony-Contemporary-Computer-Everything/dp/981277582X
dc.relation.urihttps://doi.org/10.1088/1742-6596/1344/1/012017
dc.relation.urihttp://nbuv.gov.ua/UJRN/soi_2015_8_24
dc.relation.urihttps://ela.kpi.ua/handle/123456789/11453
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Грицюк П. Ю., Сікора Л. С., Грицюк Ю. І., 2023
dc.subjectчисла Фібоначчі
dc.subjectрекурентна послідовність
dc.subjectкодове слово
dc.subjectзолотий переріз
dc.subjectдіофантові рівняння
dc.subjectметоди виправлення помилок
dc.subjectFibonacci numbers
dc.subjectrecurrent sequence
dc.subjectcode word
dc.subjectgolden ratio
dc.subjectDiophantine equation
dc.subjecterror correction method
dc.subject.udc004.(4
dc.subject.udc51
dc.subject.udc67)
dc.subject.udc519.6
dc.titleМетоди виправлення помилок у закодованих повідомленнях матрицями Фібоначчі
dc.title.alternativeMethods of correcting errors in messages encoded by Fibonacci matrices
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023n14_Grytsiuk_P-Methods_of_correcting_327-347.pdf
Size:
13.54 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023n14_Grytsiuk_P-Methods_of_correcting_327-347__COVER.png
Size:
401.89 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: