Properties of fresh and hardened self-compacting concrete containing supplementary cementitious materials

dc.citation.epage48
dc.citation.issue1
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage42
dc.citation.volume7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКіракевич, І. І.
dc.contributor.authorKirakevych, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-26T08:05:27Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractВисвітлено властивості свіжозаформованого та затверділого самоущільнювального бетону, що містить вапняковий мікронаповнювач та додаткові цементуючі матеріали, такі як алюмосилікатна добавка на основі метакаоліну та гіпсу, зола винесення. Під час гідратації в цементній матриці з додатковими цементуючими матеріалами в неклінкерній частині відбувається реакція з утворенням кристалів етрингіту – топохімічна реакція, що забезпечує ущільнення самоущільнювального бетону. Морфологія, кристалічна структура і склад продуктів гідратації можуть бути дуже різними. За наявності достатньої кількості гіпсу (як компонента алюмосилікатної добавки) основним продуктом гідратації у неклінкерній частині є кристали етрингіту. Ці кристали дрібні, тому що утворилися в результаті топохімічної реакції в замкненому просторі під час утворення цементної матриці. Етрингіт утворюється у вигляді тонких кристалів, що забезпечує ущільнення цементної матриці та є однією з основних причин підвищення ранньої міцності самоущільнювального бетону, що містить додаткові цементуючі матеріали. Утворення вторинного дрібнодисперсного етрингіту під час взаємодії активного оксиду алюмінію із кальцію гідроксидом та двоводним гіпсом у неклінкерній частині в’яжучого за рахунок топохімічних реакцій забезпечує компенсацію усадки та приріст міцності цементуючої системи. Використання додаткових цементуючих матеріалів у складі самоущільнювального бетону забезпечує одержання високорухливих бетонних сумішей (розплив конуса бетонної суміші становить 650–730 мм) високої в’язкості (час отримання розпливу 500 мм 5–13 с), а затверділі бетони на їх основі характеризуються високою міцністю (58–95 МПа), низькою пористістю, високою надійністю і довговічністю конструкцій.
dc.description.abstractThis paper presents the properties of fresh and hardened self-compacting concrete (SCC) containing supplementary cementitious materials, such as complex sulphoaluminosilicate additive based on the metakaolin and gypsum, fly-ash and limestone microfiller. If sufficient gypsum is present the main hydration products in unclinker part is a thin crystals of ettringite. Ettringite is formed by a topochemical reaction in a closed space at the beginning of the formation of the cement matrix, which ensures the compaction of SCC. This is one of the major causes of increasing of the early strength of SCC containing supplementary cementitious materials. The SCC containing supplementary cementitious materials are characterized by such properties as obtaining workability concrete mixtures (slump flow 650–730 mm), high viscosity (T50 = 5–13 s), high strength (58–95 MPa), low porosity, high reliability and durability of structures.
dc.format.extent42-48
dc.format.pages7
dc.identifier.citationKirakevych I. Properties of fresh and hardened self-compacting concrete containing supplementary cementitious materials / Iryna Kirakevych // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 42–48.
dc.identifier.citationenKirakevych I. Properties of fresh and hardened self-compacting concrete containing supplementary cementitious materials / Iryna Kirakevych // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 42–48.
dc.identifier.doidoi.org/10.23939/jtbp2025.01.042
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124483
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 1 (7), 2025
dc.relation.ispartofTheory and Building Practice, 1 (7), 2025
dc.relation.referencesBlikharskyy, Y., Khmil, R., Selejdak, J., Katunský, D., Blikharskyy, Z. (2024). RC Beams with an middle phase of reinforcement damage. System safety: Human - Technical facilyty - Environmental, 6 (1), 184-191. Retrieved from: https://doi.org/10.2478/czoto-2024-0020.
dc.relation.referencesSanytsky, M., Usherov-Marshak, A., Marushchak, U. & Kabus, A. (2021). The effect of mechanical activation on the properties of hardened Portland Cement. Lecture Notes in Civil Engineering, 100, 378-384. Retrieved from: https://doi.org/10.1007/978-3-030-57340-9_46.
dc.relation.referencesSanytsky, M., Kropyvnytska, T., Нeviuk, I., Sikora, P. & Braichenko, S. (2021). Development of rapid-hardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern-European Journal of Enterprise Technologies, 5 (6 (113), 62-72. Retrieved from: https://doi.org/10.15587/1729-4061.2021.242813.
dc.relation.referencesSohail, M., Kahraman, R., Nuaimi, N., Gencturk, B. Alnahhal, W. (2021). Durability characteristics of high and ultra-high performance concretes. Journal of Building Engineering, 33, 101669. https://doi.org/10.1016/j.jobe.2020.101669.
dc.relation.referencesAicin, P. (2003). The durability characteristics of high performance concrete. Cement and Concrete Composites, 25 (4-5), 409-420. Retrieved from: https://doi.org/10.1016/S0958-9465(02)00081-1.
dc.relation.referencesJasiczak, J., Wdowska, A. & Rudnicki, T. (2008). Betony ultrawysokowartościowe, właściwości, technologie, zastosowanie: Stowarzyszenie Producentow Cementu, Krakow. Retrieved from: https://www.researchgate.net/publication/342720481_Betony_ultrawysokowartosciowe__wlasciwosci_technologie_zastosowania_UltraHigh_Performance_Concretes_Properties_Technology_Applications.
dc.relation.referencesSwitonski, A., Mrozik, L. Piekarski, P. (2004). Creating structure and properties of high performance concrete. University of Science and Technology in Bydgoszcz. https://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20structure%20and%20properties%20of%20high%20performance%20concrete3.pdf?sequence=1&isAllowed=y.
dc.relation.referencesRunova, R., Gots, V., Rudenko, I., Konstantynovskyi, O. & Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences 230, 03016. Retrieved from: https://doi.org/10.1051/matecconf/201823003016.
dc.relation.referencesSanytsky, M., Kropyvnytska, T., Vakhula, O. & Bobetsky, Y. (2024). Nanomodified ultra high-performance fiber reinforced cementitious composites with enhanced operational characteristics. Proceedings of CEE 2023, 438, 362-371. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_36.
dc.relation.referencesNivin, P., Jędrzejewska, A., Varughese, A. & James, J. (2022). Influence of pore structure on corrosion resistance of high performance concrete containing metakaolin. Cement - Wapno - Beton, 27 (5), 302-319. Retrieved from: https://doi.org/10.32047/CWB.2022.27.5.1.
dc.relation.referencesValcuende, M., Lliso-Ferrando, J., Ramón-Zamora, J. & Soto, J. (2021). Corrosion resistance of ultra-high performance fibre-reinforced concrete. Construction and Building Materials 306, 124914. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2021.124914.
dc.relation.referencesChousidis, N., Rakanta., E., Ioannou, I. & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials. 101, 810-817. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2015.10.127.
dc.relation.referencesHaufe, J., Vollpracht, A. & Matschei, T. (2021). Performance test for sulfate resistance of concrete by tensile strength measurements: Determination of test criteria. Crystals, 11 (9), 1018. Retrieved from: https://doi.org/10.3390/cryst11091018.
dc.relation.referencesKrivenko, P., Petropavlovskyi, O. & Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 6 (91), 33-39. Retrieved from: https://doi.org/10.15587/1729-4061.2018.119624.
dc.relation.referencesSanytsky, M., Rusyn, B., Kirakevych, I. & Kaminskyy, A. (2023). Architectural self-compacting concrete based on nano-modified cementitious systems. International Conference Current Issues of Civil and Environmental Engineering Lviv - Košice - Rzeszów. Proceedings of CEE, 372-380. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_37.
dc.relation.referencesBorziak, O., Plugin, A., Chepurna, S., Zavalniy, O. & Dudin, O. (2019). The effect of added finely dispersed calcite on the corrosion resistance of cement compositions. IOP Conf. Series: Materials Science and Engineering, 708, 012080. doi: 10.1088/1757-899X/708/1/012080.
dc.relation.referencesKropyvnytska, T., Sanytsky, M., Rucińska, T., & Rykhlitska, O. (2019). Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. Eastern-European Journal of Enterprise Technologies, 6 (102), 38-48. Retrieved from: https://doi.org/10.15587/1729-4061.2019.185111.
dc.relation.referencesKirakevych, I., Sanytsky, M., Shyiko, O. Kagarlitskiy, R. (2021). Modification of cementitious matrix of rapid-hardening high-performance concretes. Theory and Building Practice. 3 (1), 79-84. Retrieved from: https://doi.org/10.23939/jtbp2021.01.079.
dc.relation.referencesGots, V., Berdnyk, O., Lastivka, O., Maystrenko, A. & Amelina, N. (2023). Corrosion of basalt fiber with titanium dioxide coating in NaOH and Ca(OH)2 solutions. AIP Conf. Proc. 2490, 050010. Retrieved from: https://doi.org/10.1063/5.0122739.
dc.relation.referencesValcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E. & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Constr. Build. Mater., 28 (1), 122-128. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2011.07.029.
dc.relation.referencesTing, M., Wong, K., Rahman, M. Meheron, S. (2021). Deterioration of marine concrete exposed to wetting-drying action. J. Clean. Prod, 278, 123383. https://doi.org/10.1016/j.jclepro.2020.123383.
dc.relation.referencesSun, Y. & Wu, X. (2022). Two types of corrosion resistant high-performance concrete: ECC and EPS concrete. Advances in Civil Function Structure and Industrial Architecture. Retrieved from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two-types-corrosion-resistant-high-performance-concrete-ecc-eps-concrete-yixin-sun-xinyi-wu.
dc.relation.referencesShi, Z., Shi, C., Zhao, R. & Wan, S. (2015). Comparison of alkali-silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures. 48, 743-751 Retrieved from: https://doi.org/10.1617/s11527-015-0535-4.
dc.relation.referencesIvashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. (2019). Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies. 4(6-100), 39-47. Retrieved from: https://doi.org/10.15587/1729-4061.2019.175472.
dc.relation.referencesLooney, T., Leggs, M., Volz, J. & Floyd, R. (2022). Durability and corrosion resistance of ultra-high performance concretes for repair. Construction and Building Materials, 345, 128238. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2022.128238.
dc.relation.referencesenBlikharskyy, Y., Khmil, R., Selejdak, J., Katunský, D., Blikharskyy, Z. (2024). RC Beams with an middle phase of reinforcement damage. System safety: Human - Technical facilyty - Environmental, 6 (1), 184-191. Retrieved from: https://doi.org/10.2478/czoto-2024-0020.
dc.relation.referencesenSanytsky, M., Usherov-Marshak, A., Marushchak, U. & Kabus, A. (2021). The effect of mechanical activation on the properties of hardened Portland Cement. Lecture Notes in Civil Engineering, 100, 378-384. Retrieved from: https://doi.org/10.1007/978-3-030-57340-9_46.
dc.relation.referencesenSanytsky, M., Kropyvnytska, T., Neviuk, I., Sikora, P. & Braichenko, S. (2021). Development of rapid-hardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern-European Journal of Enterprise Technologies, 5 (6 (113), 62-72. Retrieved from: https://doi.org/10.15587/1729-4061.2021.242813.
dc.relation.referencesenSohail, M., Kahraman, R., Nuaimi, N., Gencturk, B. Alnahhal, W. (2021). Durability characteristics of high and ultra-high performance concretes. Journal of Building Engineering, 33, 101669. https://doi.org/10.1016/j.jobe.2020.101669.
dc.relation.referencesenAicin, P. (2003). The durability characteristics of high performance concrete. Cement and Concrete Composites, 25 (4-5), 409-420. Retrieved from: https://doi.org/10.1016/S0958-9465(02)00081-1.
dc.relation.referencesenJasiczak, J., Wdowska, A. & Rudnicki, T. (2008). Betony ultrawysokowartościowe, właściwości, technologie, zastosowanie: Stowarzyszenie Producentow Cementu, Krakow. Retrieved from: https://www.researchgate.net/publication/342720481_Betony_ultrawysokowartosciowe__wlasciwosci_technologie_zastosowania_UltraHigh_Performance_Concretes_Properties_Technology_Applications.
dc.relation.referencesenSwitonski, A., Mrozik, L. Piekarski, P. (2004). Creating structure and properties of high performance concrete. University of Science and Technology in Bydgoszcz. https://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20structure%20and%20properties%20of%20high%20performance%20concrete3.pdf?sequence=1&isAllowed=y.
dc.relation.referencesenRunova, R., Gots, V., Rudenko, I., Konstantynovskyi, O. & Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences 230, 03016. Retrieved from: https://doi.org/10.1051/matecconf/201823003016.
dc.relation.referencesenSanytsky, M., Kropyvnytska, T., Vakhula, O. & Bobetsky, Y. (2024). Nanomodified ultra high-performance fiber reinforced cementitious composites with enhanced operational characteristics. Proceedings of CEE 2023, 438, 362-371. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_36.
dc.relation.referencesenNivin, P., Jędrzejewska, A., Varughese, A. & James, J. (2022). Influence of pore structure on corrosion resistance of high performance concrete containing metakaolin. Cement - Wapno - Beton, 27 (5), 302-319. Retrieved from: https://doi.org/10.32047/CWB.2022.27.5.1.
dc.relation.referencesenValcuende, M., Lliso-Ferrando, J., Ramón-Zamora, J. & Soto, J. (2021). Corrosion resistance of ultra-high performance fibre-reinforced concrete. Construction and Building Materials 306, 124914. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2021.124914.
dc.relation.referencesenChousidis, N., Rakanta., E., Ioannou, I. & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials. 101, 810-817. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2015.10.127.
dc.relation.referencesenHaufe, J., Vollpracht, A. & Matschei, T. (2021). Performance test for sulfate resistance of concrete by tensile strength measurements: Determination of test criteria. Crystals, 11 (9), 1018. Retrieved from: https://doi.org/10.3390/cryst11091018.
dc.relation.referencesenKrivenko, P., Petropavlovskyi, O. & Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 6 (91), 33-39. Retrieved from: https://doi.org/10.15587/1729-4061.2018.119624.
dc.relation.referencesenSanytsky, M., Rusyn, B., Kirakevych, I. & Kaminskyy, A. (2023). Architectural self-compacting concrete based on nano-modified cementitious systems. International Conference Current Issues of Civil and Environmental Engineering Lviv - Košice - Rzeszów. Proceedings of CEE, 372-380. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_37.
dc.relation.referencesenBorziak, O., Plugin, A., Chepurna, S., Zavalniy, O. & Dudin, O. (2019). The effect of added finely dispersed calcite on the corrosion resistance of cement compositions. IOP Conf. Series: Materials Science and Engineering, 708, 012080. doi: 10.1088/1757-899X/708/1/012080.
dc.relation.referencesenKropyvnytska, T., Sanytsky, M., Rucińska, T., & Rykhlitska, O. (2019). Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. Eastern-European Journal of Enterprise Technologies, 6 (102), 38-48. Retrieved from: https://doi.org/10.15587/1729-4061.2019.185111.
dc.relation.referencesenKirakevych, I., Sanytsky, M., Shyiko, O. Kagarlitskiy, R. (2021). Modification of cementitious matrix of rapid-hardening high-performance concretes. Theory and Building Practice. 3 (1), 79-84. Retrieved from: https://doi.org/10.23939/jtbp2021.01.079.
dc.relation.referencesenGots, V., Berdnyk, O., Lastivka, O., Maystrenko, A. & Amelina, N. (2023). Corrosion of basalt fiber with titanium dioxide coating in NaOH and Ca(OH)2 solutions. AIP Conf. Proc. 2490, 050010. Retrieved from: https://doi.org/10.1063/5.0122739.
dc.relation.referencesenValcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E. & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Constr. Build. Mater., 28 (1), 122-128. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2011.07.029.
dc.relation.referencesenTing, M., Wong, K., Rahman, M. Meheron, S. (2021). Deterioration of marine concrete exposed to wetting-drying action. J. Clean. Prod, 278, 123383. https://doi.org/10.1016/j.jclepro.2020.123383.
dc.relation.referencesenSun, Y. & Wu, X. (2022). Two types of corrosion resistant high-performance concrete: ECC and EPS concrete. Advances in Civil Function Structure and Industrial Architecture. Retrieved from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two-types-corrosion-resistant-high-performance-concrete-ecc-eps-concrete-yixin-sun-xinyi-wu.
dc.relation.referencesenShi, Z., Shi, C., Zhao, R. & Wan, S. (2015). Comparison of alkali-silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures. 48, 743-751 Retrieved from: https://doi.org/10.1617/s11527-015-0535-4.
dc.relation.referencesenIvashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. (2019). Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies. 4(6-100), 39-47. Retrieved from: https://doi.org/10.15587/1729-4061.2019.175472.
dc.relation.referencesenLooney, T., Leggs, M., Volz, J. & Floyd, R. (2022). Durability and corrosion resistance of ultra-high performance concretes for repair. Construction and Building Materials, 345, 128238. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2022.128238.
dc.relation.urihttps://doi.org/10.2478/czoto-2024-0020
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_46
dc.relation.urihttps://doi.org/10.15587/1729-4061.2021.242813
dc.relation.urihttps://doi.org/10.1016/j.jobe.2020.101669
dc.relation.urihttps://doi.org/10.1016/S0958-9465(02)00081-1
dc.relation.urihttps://www.researchgate.net/publication/342720481_Betony_ultrawysokowartosciowe__wlasciwosci_technologie_zastosowania_UltraHigh_Performance_Concretes_Properties_Technology_Applications
dc.relation.urihttps://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20structure%20and%20properties%20of%20high%20performance%20concrete3.pdf?sequence=1&isAllowed=y
dc.relation.urihttps://doi.org/10.1051/matecconf/201823003016
dc.relation.urihttps://doi.org/10.1007/978-3-031-44955-0_36
dc.relation.urihttps://doi.org/10.32047/CWB.2022.27.5.1
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.124914
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2015.10.127
dc.relation.urihttps://doi.org/10.3390/cryst11091018
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.119624
dc.relation.urihttps://doi.org/10.1007/978-3-031-44955-0_37
dc.relation.urihttps://doi.org/10.15587/1729-4061.2019.185111
dc.relation.urihttps://doi.org/10.23939/jtbp2021.01.079
dc.relation.urihttps://doi.org/10.1063/5.0122739
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2011.07.029
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.123383
dc.relation.urihttps://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two-types-corrosion-resistant-high-performance-concrete-ecc-eps-concrete-yixin-sun-xinyi-wu
dc.relation.urihttps://doi.org/10.1617/s11527-015-0535-4
dc.relation.urihttps://doi.org/10.15587/1729-4061.2019.175472
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.128238
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Kirakevych I., 2025
dc.subjectсамоущільнювальний бетон
dc.subjectдодаткові цементуючі матеріали
dc.subjectметакаолін
dc.subjectзола винесення
dc.subjectвапняковий мікронаповнювач
dc.subjectполікарбоксилатний пластифікатор
dc.subjectself-compacting concrete
dc.subjectsupplementary cementitious materials
dc.subjectmetakaolin
dc.subjectflyash
dc.subjectlimestone microfiller
dc.subjectpolycarboxylate type superplasticizer
dc.titleProperties of fresh and hardened self-compacting concrete containing supplementary cementitious materials
dc.title.alternativeВластивості свіжозаформованого та затверділого самоущільнювального бетону, що містить додаткові цементуючі матеріали
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v7n1_Kirakevych_I-Properties_of_fresh_and_42-48.pdf
Size:
526.47 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v7n1_Kirakevych_I-Properties_of_fresh_and_42-48__COVER.png
Size:
442.78 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: