Система підтримки прийняття рішень виявлення дезінформації, фейків та пропаганди на основі машинного навчання

dc.citation.epage116
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage105
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorВисоцька, В. А.
dc.contributor.authorРоманчук, Р. В.
dc.contributor.authorVysotska, V. A.
dc.contributor.authorRomanchuk, R. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:25:53Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractВнаслідок спрощення процесів створення та поширення новин через інтернет, а також через фізичну неможливість перевірки великих обсягів інформації, що циркулює у мережі, значно зросли обсяги поширення дезінформації та фейкових новин. Побудовано систему підтримки прийняття рішень щодо виявлення дезінформації, фейків та пропаганди на основі машинного навчання. Досліджено методику аналізу тексту новин для ідентифікації фейку та передбачення виявлення дезінформації в текстах новин. У зв’язку з цим виявлення неправдивих новин стає критичним завданням. Це не лише забезпечує надання користувачам перевіреної та достовірної інформації, а й допомагає запобігти маніпулюванню суспільною свідомістю. Посилення контролю за достовірністю новин важливе для підтримки надійної екосистеми інформаційного простору. Комбінування IR та NLP дає змогу системам автоматично аналізувати та відстежувати інформацію, щоб виявляти можливі факти дезінформації або фейкові новини. Важливо також враховувати контекст, джерело інформації та інші фактори для точного визначення достовірності. Такі автоматичні методи допомагають у реальному часі виявляти та вирішувати проблеми, пов’язані з поширенням дезінформації в соціальних мережах. Для експерименту ми використали набір даних із загальною кількістю 20 000 статей: 10 000 записів для фейкових новин і 10 000 для нефейкових. Більшість статей пов’язані з політикою. Для обох піднаборів даних виконано основні процедури очищення тексту, такі як зміна тексту на малі літери, видалення знаків пунктуації, очищення тегів розташування та автора, а також видалення стоп-слів тощо. Після очищення виконано токенізацію та лематизацію. Для кращих результатів лематизації кожен токен позначено тегом POS. Використання тегів POS допомагає точніше виконувати лематизацію. Для обох піднаборів даних створено біграми та триграми, щоб краще зрозуміти контекст статей у наборі даних. Виявлено, що у нефейкових новинах використовується офіційніший мовний стиль. Проаналізовано настрої в обох піднаборах даних. Результати показують, що фальшивий субнабір даних містить більше негативних балів, тоді як нефальшивий субнабір даних – переважно позитивні оцінки. Піднабори даних були об’єднані перед створенням моделі прогнозування. Для моделі прогнозування використано функції BOW і Logistic Regression. Оцінка F1 становить 0,98 для обох класів фейк / не фейк.
dc.description.abstractDue to the simplification of the processes of creating and distributing news via the Internet, as well as due to the physical impossibility of checking large volumes of information circulating in the network, the volume of disinformation and fake news distribution has increased significantly. A decision support system for identifying disinformation, fakes and propaganda based on machine learning has been built. The method of news text analysis for identifying fakes and predicting the detection of disinformation in news texts has been studied. Due to the simplification of the processes of creating and distributing news via the Internet, as well as due to the physical impossibility of checking large volumes of information circulating in the network, the volume of disinformation and fake news distribution has increased significantly. In this regard, detection of fake news becomes a critical task. This not only ensures the provision of verified and reliable information to users, but also helps prevent manipulation of public consciousness. Strengthening control over the credibility of news is important for maintaining a reliable ecosystem of the information space. The combination of IR and NLP allows systems to automatically analyse and track information to detect potential misinformation or fake news. It is also important to consider context, source of information, and other factors to accurately determine credibility. Such automated methods can help in real-time detection and resolution of problems related to the spread of misinformation in social networks. For our experiment, we use a dataset with a total number of 20,000 articles: 10,000 entries for fake news and 10,000 for non-fake news. Most of the articles are related to politics. For both subsets of the data, basic text cleaning procedures such as changing text to lowercase, removing punctuation marks, cleaning location and author tags, and removing stop words, etc., were performed. After cleaning, tokenization and lemmatization were performed. For better lemmatization results, each token is labelled with a POS tag. Using POS tags helps perform lemmatization more accurately. For both subsets of the data, bigrams and trigrams were created to better understand the context of the articles in the data set. It was found that non-fake news uses a more formal language style. Next, we performed sentiment analysis on both subsets of the data. The results show that the fake sub-dataset contains more negative scores, while the non-false sub-dataset has mostly positive scores. Subsets of the data were combined before building the prediction model. BOW and Logistic Regression functions were used for the forecast model. The F1 score is 0.98 for both fake/non-fake classes.
dc.format.extent105-116
dc.format.pages12
dc.identifier.citationВисоцька В. А. Система підтримки прийняття рішень виявлення дезінформації, фейків та пропаганди на основі машинного навчання / В. А. Висоцька, Р. В. Романчук // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 2. — С. 105–116.
dc.identifier.citationenVysotska V. A. Decision support system for disinformation, fakes and propaganda detection based on machine learning / V. A. Vysotska, R. V. Romanchuk // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 105–116.
dc.identifier.doidoi.org/10.23939/ujit2024.02.105
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120423
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 2 (6), 2024
dc.relation.ispartofUkrainian Journal of Information Technology, 2 (6), 2024
dc.relation.references1. Tyshchenko, V., & Muzhanova, T. (2022). Disinformation and fake news: features and methods of detection on the internet. Cybersecurity: education, science, technique, 2(18), 175 186. https://doi.org/10.28925/2663-4023.2022.18.175186
dc.relation.references2. Myronyuk, O. (2024). Misinformation: how to recognize and combat it [Misinformation: how to recognize and combat it]. Retrieved from: https://law.chnu.edu.ua/dezinformatsiia-yak-rozpiznaty-ta-borotysia/
dc.relation.references3. Reuter, C., Hartwig, K., Kirchner, J., & Schlegel, N. (2019). Fake news perception in Germany: A representative study of people's attitudes and approaches to counteract disinformation. Retrieved from: https://aisel.aisnet.org/wi2019/track09/papers/5/
dc.relation.references4. Luchko, Y. I. (2023). The role of artificial intelligence technologies in spreading and combating disinformation [The role of artificial intelligence technologies in spreading and combating disinformation]. Countermeasures against disinformation in the conditions of Russian aggression against Ukraine: challenges and prospects: theses addendum. participants of the international science and practice conf. (Ann Arbor - Kharkiv, December 12-13, 2023), 104-106. https://doi.org/10.32782/PPSS.2023.1.26
dc.relation.references5. Комісарів, М. (2023). Проблема поширення недостовірної інформації у ЗМІ та соціальних медіа. Retrieved from: https://www.osce.org/representative-on-freedomof-media.
dc.relation.references6. Marchi, R. (2012). With facebook, blogs, and fake news, teens reject journalistic "objectivity". Journal of communication inquiry, 36(3), 246 262. https://doi.org/10.1177/0196859912458700
dc.relation.references7. Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake News Detection on Social Media: A Data Mining Perspective. SIGKDD Explorations Newsletter, 19(1), 22 36. https://doi.org/10.1145/3137597.3137600
dc.relation.references8. Zhou, Z.; Guan, H.; Bhat, M. & Hsu, J. (2019). Fake News Detection via NLP is Vulnerable to Adversarial Attacks. Proceedings of the International Conference on Agents and Artificial Intelligence, 2, 794-800. https://doi.org/10.5220/0007566307940800
dc.relation.references9. Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, Cass. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094-1096. https://doi.org/10.1126/science.aao299
dc.relation.references10. Vosoughi, S, Roy, D, & Aral, S. (2018). The spread of true and false news online. Science, 359, 1146-1151. https://doi.org/10.1126/science.aap9559
dc.relation.references11. Zuo, C., Karakas, A. I., & Banerjee, R. (2018). A hybrid recognition system for check-worthy claims using heuristics and supervised learning. CEUR workshop proceedings, 2125. Retrieved from: https://ceur-ws.org/Vol-2125/paper_143.pdf
dc.relation.references12. Hansen, C., Hansen, C., Simonsen, J. G., & Lioma, C. (2018). The Copenhagen Team Participation in the Check-Worthiness Task of the Competition of Automatic Identification and Verification of Claims in Political Debates of the CLEF-2018 CheckThat! Lab. CEUR Workshop Proceedings, 2125. Retrieved from: https://ceur-ws.org/Vol-2125/paper_81.pdf
dc.relation.references13. Thorne, J, & Vlachos, A. (2018). Automated fact checking: Task formulations, methods and future directions. arXiv preprint arXiv:180607687. https://doi.org/10.48550/arXiv.1806.07687.
dc.relation.references14. Mihaylova, T, Karadjov, G, Atanasova, P, Baly, R, Mohtarami, M, & Nakov, P. (2019). SemEval- 2019 task 8: Fact checking in community question answering forums. arXiv preprint arXiv:190601727. https://doi.org/10.48550/arXiv.1906.01727
dc.relation.references15. O'Brien, N. (2018). Machine learning for detection of fake news. Retrieved from: https://dspace.mit.edu/handle/1721.1/1197279
dc.relation.references16. Canini, K. R, Suh, B, & Pirolli, P. L. (2011). Finding credible information sources in social networks based on content and social structure. International Conference on Privacy, Security, Risk and Trust and International Conference on Social Computing, Boston, MA, USA, 1-8. https://doi.org/10.1109/PASSAT/SocialCom.2011.91
dc.relation.references17. Derczynski, L., Bontcheva, K., Liakata, M., Procter, R., Hoi, G. W. S., & Zubiaga, A. (2017). SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours. arXiv preprint arXiv:170405972. https://doi.org/10.48550/arXiv.1704.05972
dc.relation.references18. Baly, R., Karadzhov, G., Alexandrov, D., Glass, J., & Nakov, P. (2018). Predicting factuality of reporting and bias of news media sources. arXiv preprint arXiv:181001765. https://doi.org/10.48550/arXiv.1810.01765
dc.relation.references19. Hardalov, M., Koychev, I., & Nakov, P. (2016). In Search of Credible News. In: Dichev, C., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2016. Lecture Notes in Computer Science, 9883. Springer, Cham. https://doi.org/10.1007/978-3-319-44748-3_17
dc.relation.references20. Enayet, O., & El-Beltagy, S. R. (2017). NileTMRG at SemEval-2017 task 8: Determining rumour and veracity support for rumours on Twitter. https://doi.org/10.18653/v1/S17-2082
dc.relation.references21. Juola, P. (2012). An Overview of the Traditional Authorship Attribution Subtask. CEUR Workshop Proceedings, 1178. Retrieved from: https://ceur-ws.org/Vol-1178/CLEF2012wn-PAN-Juola2012.pdf.
dc.relation.references22. Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the American Society for information Science and Technology, 60(3), 538-556. https://doi.org/10.1002/asi.21001
dc.relation.references23. Popat, K., Mukherjee, S., Strötgen, J., & Weikum, G. (2017). Where the truth lies: Explaining the credibility of emerging claims on the web and social media. Proceedings of the 26th international conference on world wide web companion, 1003-1012. https://doi.org/10.1145/3041021.3055133
dc.relation.references24. Aphiwongsophon, S., & Chongstitvatana, P. (2018). Detecting fake news with machine learning method. International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), 528-531. https://doi.org/10.1109/ECTICon.2018.8620051
dc.relation.references25. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638. https://doi.org/10.48550/arXiv.1702.05638
dc.relation.references26. Koppel, M., Schler, J., & Bonchek-Dokow, E. (2007). Measuring differentiability: Unmasking pseudonymous authors. Journal of Machine Learning Research, 8(6). Retrieved from: https://www.jmlr.org/papers/volume8/koppel07a/koppel07a.pdf.
dc.relation.references27. Horne, B., & Adali, S. (2017). This Just In: Fake News Packs A Lot In Title, Uses Simpler, Repetitive Content in Text Body, More Similar To Satire Than Real News. Proceedings of the International AAAI Conference on Web and Social Media, 11(1), 759-766. https://doi.org/10.1609/icwsm.v11i1.14976
dc.relation.references28. Jain, A., Shakya, A., Khatter, H., & Gupta, A. K. (2019). A smart system for fake news detection using machine learning. In 2019 International conference on issues and challenges in intelligent computing techniques (ICICT), 1, 1-4. https://doi.org/10.1109/ICICT46931.2019.8977659
dc.relation.references29. Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of varying shades: Analyzing language in fake news and political fact-checking. Proceedings of the conference on empirical methods in natural language processing, 2931-2937. https://doi.org/10.18653/v1/D17-1317
dc.relation.references30. Shao, C., Ciampaglia, G. L., Varol, O., Flammini, A., & Menczer, F. (2017). The spread of fake news by social bots. arXiv preprint arXiv:1707.07592, 96(104), 14. Retrieved from: https://cs.furman.edu/~tallen/csc271/source/viralBot.pdf
dc.relation.references31. Horne, B., Khedr, S., & Adali, S. (2018). Sampling the News Producers: A Large News and Feature Data Set for the Study of the Complex Media Landscape. Proceedings of the International AAAI Conference on Web and Social Media, 12(1). https://doi.org/10.1609/icwsm.v12i1.14982
dc.relation.references32. Mahir, E. M., Akhter, S., & Huq, M. R. (2019). Detecting fake news using machine learning and deep learning algorithms. International conference on smart computing & communications (ICSCC), 1-5. IEEE. https://doi.org/10.1109/ICSCC.2019.8843612 https://doi.org/10.1109/ICSCC.2019.8843612
dc.relation.references33. Da San Martino, G., Seunghak, Y., Barrón-Cedeno, A., Petrov, R., & Nakov, P. (2019). Fine-grained analysis of propaganda in news article. Proceedings of the conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), 5636-5646. Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1565
dc.relation.references34. Nouh, M., Nurse, J. R., & Goldsmith, M. (2019, July). Understanding the radical mind: Identifying signals to detect extremist content on twitter. International conference on intelligence and security informatics (ISI). IEEE, 98-103. https://doi.org/10.1109/ISI.2019.8823548
dc.relation.references35. Barrón-Cedeño, А., Jaradat, I., Da San Martino, G., & Nakov, P. (2019). Proppy: Organizing the news based on their propagandistic content. Retrieved from: https://wwwsciencedirectcom/science/article/abs/pii/S0306457318306058:16.
dc.relation.references36. Oliinyk, V. A., Vysotska, V., Burov, Y., Mykich, K., & Basto-Fernandes, V. (2020). Propaganda Detection in Text Data Based on NLP and Machine Learning. CEUR Workshop Proceedings, 2631, 132-144. Retrieved from: https://ceur-ws.org/Vol-2631/paper10.pdf
dc.relation.references37. Altiti, O., Abdullah, M., & Obiedat, R. (2020). Just at semeval-2020 task 11: Detecting propaganda techniques using bert pre-trained model. Proceedings of the Fourteenth Workshop on Semantic Evaluation, 1749-1755. https://doi.org/10.18653/v1/2020.semeval-1.229
dc.relation.references38. Han, Y., Karunasekera, S., & Leckie, C. (2020). Graph neural networks with continual learning for fake news detection from social media. arXiv preprint arXiv:2007.03316. https://doi.org/10.48550/arXiv.2007.03316
dc.relation.references39. Polonijo, B., Šuman, S., & Šimac, I. (2021). Propaganda detection using sentiment aware ensemble deep learning. International Convention on Information, Communication and Electronic Technology, 199-204. https://doi.org/10.23919/MIPRO52101.2021.9596654
dc.relation.references40. Sprenkamp, K., Jones, D. G., & Zavolokina, L. (2023). Large language models for propaganda detection. arXiv preprint arXiv:2310.06422. https://doi.org/10.48550/arXiv.2310.06422
dc.relation.references41. Li, W., Li, S., Liu, C., Lu, L., Shi, Z., & Wen, S. (2022). Span identification and technique classification of propaganda in news articles. Complex & Intelligent Systems, 8(5), 3603-3612. https://doi.org/10.1007/s40747-021-00393-y
dc.relation.references42. Martseniuk, M., Kozachok, V., Bohdanov, O., & Brzhevska, Z. (2023). Analysis of methods for detecting misinformation in social networks using machine learning. Electronic Professional Scientific Journal "Cybersecurity: Education, Science, Technique", 2(22), 148 155. https://doi.org/10.28925/2663-4023.2023.22.148155
dc.relation.references43. Ravichandiran, S. (2021). Getting Started with Google BERT: Build and train state-of-the-art natural language processing models using BERT. Packt Publishing Ltd.
dc.relation.references44. Xiao, Y., & Jin, Z. (2021). Summary of research methods on pre-training models of natural language processing. Open Access Library Journal, 8(7), 1-7. https://doi.org/10.4236/oalib.1107602
dc.relation.references45. Ibrahim, M., & Murshed, M. (2016). From tf-idf to learning-to-rank: An overview. Handbook of research on innovations in information retrieval, analysis, and management, 62-109. https://doi.org/10.4018/978-1-4666-8833-9.ch003
dc.relation.references46. Omar, M., Choi, S., Nyang, D., & Mohaisen, D. (2022). Robust natural language processing: Recent advances, challenges, and future directions. IEEE Access, 10, 86038-86056. https://doi.org/10.1109/ACCESS.2022.3197769
dc.relation.references47. Verma, P. K., Agrawal, P., & Prodan, R. (2021). WELFake Dataset for Fake News Detection in Text Data (Version: 0.1) [Data Set]. Genéve, Switzerland: Zenodo.
dc.relation.referencesen1. Tyshchenko, V., & Muzhanova, T. (2022). Disinformation and fake news: features and methods of detection on the internet. Cybersecurity: education, science, technique, 2(18), 175 186. https://doi.org/10.28925/2663-4023.2022.18.175186
dc.relation.referencesen2. Myronyuk, O. (2024). Misinformation: how to recognize and combat it [Misinformation: how to recognize and combat it]. Retrieved from: https://law.chnu.edu.ua/dezinformatsiia-yak-rozpiznaty-ta-borotysia/
dc.relation.referencesen3. Reuter, C., Hartwig, K., Kirchner, J., & Schlegel, N. (2019). Fake news perception in Germany: A representative study of people's attitudes and approaches to counteract disinformation. Retrieved from: https://aisel.aisnet.org/wi2019/track09/papers/5/
dc.relation.referencesen4. Luchko, Y. I. (2023). The role of artificial intelligence technologies in spreading and combating disinformation [The role of artificial intelligence technologies in spreading and combating disinformation]. Countermeasures against disinformation in the conditions of Russian aggression against Ukraine: challenges and prospects: theses addendum. participants of the international science and practice conf. (Ann Arbor - Kharkiv, December 12-13, 2023), 104-106. https://doi.org/10.32782/PPSS.2023.1.26
dc.relation.referencesen5. Komisariv, M. (2023). Problema poshyrennia nedostovirnoi informatsii u ZMI ta sotsialnykh media. Retrieved from: https://www.osce.org/representative-on-freedomof-media.
dc.relation.referencesen6. Marchi, R. (2012). With facebook, blogs, and fake news, teens reject journalistic "objectivity". Journal of communication inquiry, 36(3), 246 262. https://doi.org/10.1177/0196859912458700
dc.relation.referencesen7. Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake News Detection on Social Media: A Data Mining Perspective. SIGKDD Explorations Newsletter, 19(1), 22 36. https://doi.org/10.1145/3137597.3137600
dc.relation.referencesen8. Zhou, Z.; Guan, H.; Bhat, M. & Hsu, J. (2019). Fake News Detection via NLP is Vulnerable to Adversarial Attacks. Proceedings of the International Conference on Agents and Artificial Intelligence, 2, 794-800. https://doi.org/10.5220/0007566307940800
dc.relation.referencesen9. Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, Cass. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094-1096. https://doi.org/10.1126/science.aao299
dc.relation.referencesen10. Vosoughi, S, Roy, D, & Aral, S. (2018). The spread of true and false news online. Science, 359, 1146-1151. https://doi.org/10.1126/science.aap9559
dc.relation.referencesen11. Zuo, C., Karakas, A. I., & Banerjee, R. (2018). A hybrid recognition system for check-worthy claims using heuristics and supervised learning. CEUR workshop proceedings, 2125. Retrieved from: https://ceur-ws.org/Vol-2125/paper_143.pdf
dc.relation.referencesen12. Hansen, C., Hansen, C., Simonsen, J. G., & Lioma, C. (2018). The Copenhagen Team Participation in the Check-Worthiness Task of the Competition of Automatic Identification and Verification of Claims in Political Debates of the CLEF-2018 CheckThat! Lab. CEUR Workshop Proceedings, 2125. Retrieved from: https://ceur-ws.org/Vol-2125/paper_81.pdf
dc.relation.referencesen13. Thorne, J, & Vlachos, A. (2018). Automated fact checking: Task formulations, methods and future directions. arXiv preprint arXiv:180607687. https://doi.org/10.48550/arXiv.1806.07687.
dc.relation.referencesen14. Mihaylova, T, Karadjov, G, Atanasova, P, Baly, R, Mohtarami, M, & Nakov, P. (2019). SemEval- 2019 task 8: Fact checking in community question answering forums. arXiv preprint arXiv:190601727. https://doi.org/10.48550/arXiv.1906.01727
dc.relation.referencesen15. O'Brien, N. (2018). Machine learning for detection of fake news. Retrieved from: https://dspace.mit.edu/handle/1721.1/1197279
dc.relation.referencesen16. Canini, K. R, Suh, B, & Pirolli, P. L. (2011). Finding credible information sources in social networks based on content and social structure. International Conference on Privacy, Security, Risk and Trust and International Conference on Social Computing, Boston, MA, USA, 1-8. https://doi.org/10.1109/PASSAT/SocialCom.2011.91
dc.relation.referencesen17. Derczynski, L., Bontcheva, K., Liakata, M., Procter, R., Hoi, G. W. S., & Zubiaga, A. (2017). SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours. arXiv preprint arXiv:170405972. https://doi.org/10.48550/arXiv.1704.05972
dc.relation.referencesen18. Baly, R., Karadzhov, G., Alexandrov, D., Glass, J., & Nakov, P. (2018). Predicting factuality of reporting and bias of news media sources. arXiv preprint arXiv:181001765. https://doi.org/10.48550/arXiv.1810.01765
dc.relation.referencesen19. Hardalov, M., Koychev, I., & Nakov, P. (2016). In Search of Credible News. In: Dichev, C., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2016. Lecture Notes in Computer Science, 9883. Springer, Cham. https://doi.org/10.1007/978-3-319-44748-3_17
dc.relation.referencesen20. Enayet, O., & El-Beltagy, S. R. (2017). NileTMRG at SemEval-2017 task 8: Determining rumour and veracity support for rumours on Twitter. https://doi.org/10.18653/v1/S17-2082
dc.relation.referencesen21. Juola, P. (2012). An Overview of the Traditional Authorship Attribution Subtask. CEUR Workshop Proceedings, 1178. Retrieved from: https://ceur-ws.org/Vol-1178/CLEF2012wn-PAN-Juola2012.pdf.
dc.relation.referencesen22. Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the American Society for information Science and Technology, 60(3), 538-556. https://doi.org/10.1002/asi.21001
dc.relation.referencesen23. Popat, K., Mukherjee, S., Strötgen, J., & Weikum, G. (2017). Where the truth lies: Explaining the credibility of emerging claims on the web and social media. Proceedings of the 26th international conference on world wide web companion, 1003-1012. https://doi.org/10.1145/3041021.3055133
dc.relation.referencesen24. Aphiwongsophon, S., & Chongstitvatana, P. (2018). Detecting fake news with machine learning method. International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), 528-531. https://doi.org/10.1109/ECTICon.2018.8620051
dc.relation.referencesen25. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638. https://doi.org/10.48550/arXiv.1702.05638
dc.relation.referencesen26. Koppel, M., Schler, J., & Bonchek-Dokow, E. (2007). Measuring differentiability: Unmasking pseudonymous authors. Journal of Machine Learning Research, 8(6). Retrieved from: https://www.jmlr.org/papers/volume8/koppel07a/koppel07a.pdf.
dc.relation.referencesen27. Horne, B., & Adali, S. (2017). This Just In: Fake News Packs A Lot In Title, Uses Simpler, Repetitive Content in Text Body, More Similar To Satire Than Real News. Proceedings of the International AAAI Conference on Web and Social Media, 11(1), 759-766. https://doi.org/10.1609/icwsm.v11i1.14976
dc.relation.referencesen28. Jain, A., Shakya, A., Khatter, H., & Gupta, A. K. (2019). A smart system for fake news detection using machine learning. In 2019 International conference on issues and challenges in intelligent computing techniques (ICICT), 1, 1-4. https://doi.org/10.1109/ICICT46931.2019.8977659
dc.relation.referencesen29. Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of varying shades: Analyzing language in fake news and political fact-checking. Proceedings of the conference on empirical methods in natural language processing, 2931-2937. https://doi.org/10.18653/v1/D17-1317
dc.relation.referencesen30. Shao, C., Ciampaglia, G. L., Varol, O., Flammini, A., & Menczer, F. (2017). The spread of fake news by social bots. arXiv preprint arXiv:1707.07592, 96(104), 14. Retrieved from: https://cs.furman.edu/~tallen/csc271/source/viralBot.pdf
dc.relation.referencesen31. Horne, B., Khedr, S., & Adali, S. (2018). Sampling the News Producers: A Large News and Feature Data Set for the Study of the Complex Media Landscape. Proceedings of the International AAAI Conference on Web and Social Media, 12(1). https://doi.org/10.1609/icwsm.v12i1.14982
dc.relation.referencesen32. Mahir, E. M., Akhter, S., & Huq, M. R. (2019). Detecting fake news using machine learning and deep learning algorithms. International conference on smart computing & communications (ICSCC), 1-5. IEEE. https://doi.org/10.1109/ICSCC.2019.8843612 https://doi.org/10.1109/ICSCC.2019.8843612
dc.relation.referencesen33. Da San Martino, G., Seunghak, Y., Barrón-Cedeno, A., Petrov, R., & Nakov, P. (2019). Fine-grained analysis of propaganda in news article. Proceedings of the conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), 5636-5646. Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1565
dc.relation.referencesen34. Nouh, M., Nurse, J. R., & Goldsmith, M. (2019, July). Understanding the radical mind: Identifying signals to detect extremist content on twitter. International conference on intelligence and security informatics (ISI). IEEE, 98-103. https://doi.org/10.1109/ISI.2019.8823548
dc.relation.referencesen35. Barrón-Cedeño, A., Jaradat, I., Da San Martino, G., & Nakov, P. (2019). Proppy: Organizing the news based on their propagandistic content. Retrieved from: https://wwwsciencedirectcom/science/article/abs/pii/S0306457318306058:16.
dc.relation.referencesen36. Oliinyk, V. A., Vysotska, V., Burov, Y., Mykich, K., & Basto-Fernandes, V. (2020). Propaganda Detection in Text Data Based on NLP and Machine Learning. CEUR Workshop Proceedings, 2631, 132-144. Retrieved from: https://ceur-ws.org/Vol-2631/paper10.pdf
dc.relation.referencesen37. Altiti, O., Abdullah, M., & Obiedat, R. (2020). Just at semeval-2020 task 11: Detecting propaganda techniques using bert pre-trained model. Proceedings of the Fourteenth Workshop on Semantic Evaluation, 1749-1755. https://doi.org/10.18653/v1/2020.semeval-1.229
dc.relation.referencesen38. Han, Y., Karunasekera, S., & Leckie, C. (2020). Graph neural networks with continual learning for fake news detection from social media. arXiv preprint arXiv:2007.03316. https://doi.org/10.48550/arXiv.2007.03316
dc.relation.referencesen39. Polonijo, B., Šuman, S., & Šimac, I. (2021). Propaganda detection using sentiment aware ensemble deep learning. International Convention on Information, Communication and Electronic Technology, 199-204. https://doi.org/10.23919/MIPRO52101.2021.9596654
dc.relation.referencesen40. Sprenkamp, K., Jones, D. G., & Zavolokina, L. (2023). Large language models for propaganda detection. arXiv preprint arXiv:2310.06422. https://doi.org/10.48550/arXiv.2310.06422
dc.relation.referencesen41. Li, W., Li, S., Liu, C., Lu, L., Shi, Z., & Wen, S. (2022). Span identification and technique classification of propaganda in news articles. Complex & Intelligent Systems, 8(5), 3603-3612. https://doi.org/10.1007/s40747-021-00393-y
dc.relation.referencesen42. Martseniuk, M., Kozachok, V., Bohdanov, O., & Brzhevska, Z. (2023). Analysis of methods for detecting misinformation in social networks using machine learning. Electronic Professional Scientific Journal "Cybersecurity: Education, Science, Technique", 2(22), 148 155. https://doi.org/10.28925/2663-4023.2023.22.148155
dc.relation.referencesen43. Ravichandiran, S. (2021). Getting Started with Google BERT: Build and train state-of-the-art natural language processing models using BERT. Packt Publishing Ltd.
dc.relation.referencesen44. Xiao, Y., & Jin, Z. (2021). Summary of research methods on pre-training models of natural language processing. Open Access Library Journal, 8(7), 1-7. https://doi.org/10.4236/oalib.1107602
dc.relation.referencesen45. Ibrahim, M., & Murshed, M. (2016). From tf-idf to learning-to-rank: An overview. Handbook of research on innovations in information retrieval, analysis, and management, 62-109. https://doi.org/10.4018/978-1-4666-8833-9.ch003
dc.relation.referencesen46. Omar, M., Choi, S., Nyang, D., & Mohaisen, D. (2022). Robust natural language processing: Recent advances, challenges, and future directions. IEEE Access, 10, 86038-86056. https://doi.org/10.1109/ACCESS.2022.3197769
dc.relation.referencesen47. Verma, P. K., Agrawal, P., & Prodan, R. (2021). WELFake Dataset for Fake News Detection in Text Data (Version: 0.1) [Data Set]. Genéve, Switzerland: Zenodo.
dc.relation.urihttps://doi.org/10.28925/2663-4023.2022.18.175186
dc.relation.urihttps://law.chnu.edu.ua/dezinformatsiia-yak-rozpiznaty-ta-borotysia/
dc.relation.urihttps://aisel.aisnet.org/wi2019/track09/papers/5/
dc.relation.urihttps://doi.org/10.32782/PPSS.2023.1.26
dc.relation.urihttps://www.osce.org/representative-on-freedomof-media
dc.relation.urihttps://doi.org/10.1177/0196859912458700
dc.relation.urihttps://doi.org/10.1145/3137597.3137600
dc.relation.urihttps://doi.org/10.5220/0007566307940800
dc.relation.urihttps://doi.org/10.1126/science.aao299
dc.relation.urihttps://doi.org/10.1126/science.aap9559
dc.relation.urihttps://ceur-ws.org/Vol-2125/paper_143.pdf
dc.relation.urihttps://ceur-ws.org/Vol-2125/paper_81.pdf
dc.relation.urihttps://doi.org/10.48550/arXiv.1806.07687
dc.relation.urihttps://doi.org/10.48550/arXiv.1906.01727
dc.relation.urihttps://dspace.mit.edu/handle/1721.1/1197279
dc.relation.urihttps://doi.org/10.1109/PASSAT/SocialCom.2011.91
dc.relation.urihttps://doi.org/10.48550/arXiv.1704.05972
dc.relation.urihttps://doi.org/10.48550/arXiv.1810.01765
dc.relation.urihttps://doi.org/10.1007/978-3-319-44748-3_17
dc.relation.urihttps://doi.org/10.18653/v1/S17-2082
dc.relation.urihttps://ceur-ws.org/Vol-1178/CLEF2012wn-PAN-Juola2012.pdf
dc.relation.urihttps://doi.org/10.1002/asi.21001
dc.relation.urihttps://doi.org/10.1145/3041021.3055133
dc.relation.urihttps://doi.org/10.1109/ECTICon.2018.8620051
dc.relation.urihttps://doi.org/10.48550/arXiv.1702.05638
dc.relation.urihttps://www.jmlr.org/papers/volume8/koppel07a/koppel07a.pdf
dc.relation.urihttps://doi.org/10.1609/icwsm.v11i1.14976
dc.relation.urihttps://doi.org/10.1109/ICICT46931.2019.8977659
dc.relation.urihttps://doi.org/10.18653/v1/D17-1317
dc.relation.urihttps://cs.furman.edu/~tallen/csc271/source/viralBot.pdf
dc.relation.urihttps://doi.org/10.1609/icwsm.v12i1.14982
dc.relation.urihttps://doi.org/10.1109/ICSCC.2019.8843612
dc.relation.urihttps://doi.org/10.18653/v1/D19-1565
dc.relation.urihttps://doi.org/10.1109/ISI.2019.8823548
dc.relation.urihttps://wwwsciencedirectcom/science/article/abs/pii/S0306457318306058:16
dc.relation.urihttps://ceur-ws.org/Vol-2631/paper10.pdf
dc.relation.urihttps://doi.org/10.18653/v1/2020.semeval-1.229
dc.relation.urihttps://doi.org/10.48550/arXiv.2007.03316
dc.relation.urihttps://doi.org/10.23919/MIPRO52101.2021.9596654
dc.relation.urihttps://doi.org/10.48550/arXiv.2310.06422
dc.relation.urihttps://doi.org/10.1007/s40747-021-00393-y
dc.relation.urihttps://doi.org/10.28925/2663-4023.2023.22.148155
dc.relation.urihttps://doi.org/10.4236/oalib.1107602
dc.relation.urihttps://doi.org/10.4018/978-1-4666-8833-9.ch003
dc.relation.urihttps://doi.org/10.1109/ACCESS.2022.3197769
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectрозпізнавання дезінформації
dc.subjectрозпізнавання фейків
dc.subjectопрацювання природної мови
dc.subjectмашинне навчання
dc.subjectкласифікація новин
dc.subjectdisinformation recognition
dc.subjectfake recognition
dc.subjectnatural language processing
dc.subjectmachine learning
dc.subjectnews classification
dc.titleСистема підтримки прийняття рішень виявлення дезінформації, фейків та пропаганди на основі машинного навчання
dc.title.alternativeDecision support system for disinformation, fakes and propaganda detection based on machine learning
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Vysotska_V_A-Decision_support_system_105-116.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Vysotska_V_A-Decision_support_system_105-116__COVER.png
Size:
1.56 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: