Review of disease identification methods based on computed tomography imagery
dc.citation.epage | 101 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Український журнал інформаційних технологій | |
dc.citation.spage | 95 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний технічний університет України “Київський політехнічний інститут ім. Ігоря Сікорського” | |
dc.contributor.affiliation | National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” | |
dc.contributor.author | Смілянець, Ф. А. | |
dc.contributor.author | Фіногенов, О. Д. | |
dc.contributor.author | Smilianets, F. A. | |
dc.contributor.author | Finogenov, O. D. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-05-21T08:02:07Z | |
dc.date.created | 2024-02-28 | |
dc.date.issued | 2024-02-28 | |
dc.description.abstract | Розглянуто методи та підходи до комп’ютерної діагностики різних захворювань легень на підставі автоматизованого аналізу знімків комп’ютерної томографії. Виконано пошук в базі даних Google Scholar за кількома запитами на тему аналізу знімків комп’ютерної томографії за допомогою глибокого навчання та машинного навчання серед статей, опублікованих протягом або після 2017 р. Після відсіювання результатів пошуку сформовано набір із 39 статей. Набір даних розділено за датою публікації на дві категорії: до та після початку пандемії COVID-19. Для кожного дослідження в отриманому наборі зібрано інформацію про розмір використаного набору даних, захворювання, які містяться у ньому, основну ціль класифікації, застосовані підходи та архітектури, метрики, використані для оцінювання результатів, та значення цих метрик. Надано повну інформацію про кожну зі статей у наборі, разом з посиланням. Інформацію наведено в двох таблицях, залежно від публікації до чи після появи COVID-19. Визначено, описано та порівняно популярні методології із найкращими показниками. Вибрані методології порівняно за отриманим показником точності, наведеним у відповідному дослідженні. Надано порівняльну таблицю одержаних показників точності. Вибрано найперспективніші з досліджених у розглянутих статтях методологій за показником точності. На момент укладання цього огляду ResNet його варіації та архітектури, побудовані на його основі, мають найкращі результати, а VGG та Xception є близькими конкурентами. Описано складнощі з оглядом наявних досліджень у цій галузі, найважливішими з яких є різноманітність у способі опису розміру набору даних та виборі метрик оцінювання результатів, що ускладнює порівняння багатьох окремих статей або принаймні погіршує якість такого порівняння. Описано та розглянуто метрики, які часто використовують для вимірювання результативності методів машинного навчання, застосованих у знайдених дослідженнях. Запропоновано напрям подальших досліджень з акцентом на класифікацію з багатьох класів, модульність та прогнозування прогресу захворювання. Запропонований напрям обґрунтовано тим, що більшість виявлених досліджень зосереджені на класифікації за одним класом. Також практично жодне з досліджень не аналізує прогрес захворювання, а майже всі дослідження розглядають жорсткі рішення, малопридатні для розширення з метою підтримки майбутніх захворювань та інших методів класифікації. | |
dc.description.abstract | Methods and approaches to computational diagnosis of various pulmonary diseases via automated analysis of chest images performed with computed tomography were reviewed. Google Scholar database was searched with several queries focused on deep learning and machine learning chest computed tomography imagery analysis studies published during or after 2017. A collection of 39 papers was collected after screening the search results. The collection was split by publication date into two separate sets based on the date being prior to or after the start of the COVID-19 pandemic. Information about the size of the dataset used in the study, classification categories present in it, primary classification target, employed approaches and architectures, metrics used to judge the performance, and the values of those metrics were collected for each paper in the set of discovered studies. Full collected data, including the citation, on every paper was provided in two tables respective to their publication date being prior or after COVID-19. Popular methodologies with the best metrics were identified, outlined, and described. The selected methodologies were compared by their accuracies in various papers found during this study. The comparison table of the found accuracies was provided. A best-performing approach was selected based on the found accuracies. As of this review, ResNet, its variations, and the architectures built upon it have the most promising results, with VGG and Xception being close contenders. The complications with reviewing existing studies in the field are outlined, the most important of them being the diversity in the way that dataset size is described, as well as diversity in the metrics employed, making a comparison between many individual papers impossible or at least lowering the quality of such a comparison. Metrics commonly used to measure the performance of machine learning approaches used in the found studies are outlined and described. Further research direction is proposed, with an emphasis on multi-class classification, modularity, and disease progress prediction. This proposition is guided by finding that most of the studies found focus on single class classification. Additionally, almost none of the studies discuss disease progression, and almost all of the studies discuss rigid solutions which are hardly extendable for future diseases and other classification methods. | |
dc.format.extent | 95-101 | |
dc.format.pages | 7 | |
dc.identifier.citation | Smilianets F. A. Review of disease identification methods based on computed tomography imagery / F. A. Smilianets, O. D. Finogenov // Ukrainian Journal of Information Tecnology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 95–101. | |
dc.identifier.citationen | Smilianets F. A. Review of disease identification methods based on computed tomography imagery / F. A. Smilianets, O. D. Finogenov // Ukrainian Journal of Information Tecnology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 95–101. | |
dc.identifier.doi | doi.org/10.23939/ujit2024.01.095 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64847 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал інформаційних технологій, 1 (6), 2024 | |
dc.relation.ispartof | Ukrainian Journal of Information Tecnology, 1 (6), 2024 | |
dc.relation.references | 1. WHO Coronavirus (COVID-19) Dashboard [Web resource]. Resource access mode: https://covid19.who.int. Accessed at 18 Feb 2024. | |
dc.relation.references | 2. Lakhani, P, Sundaram, B. (2017). Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 284(2), 574-582. https://doi.org/10.1148/radiol.2017162326 | |
dc.relation.references | 3. Carneiro G, Oakden-Rayner L, Bradley AP, et al. (2017). Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 130-134. https://doi.org/10.1109/ISBI.2017.7950485 | |
dc.relation.references | 4. Zhou X, Takayama R, Wang S, et al. (2017). Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med. Phys., 44, 5221-5233. https://doi.org/10.1002/mp.12480 | |
dc.relation.references | 5. Xie Y, Xia Y, Zhang J, et al. (2019). Knowledge-based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT. IEEE Transactions on Medical Imaging, 38(4), 991-1004. https://doi.org/10.1109/TMI.2018.2876510 | |
dc.relation.references | 6. Nam JG, Park S, Hwang EJ, et al. (2019). Development and Validation of Deep Learning – based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology, 290(1), 218-228. https://doi.org/10.1148/radiol.2018180237 | |
dc.relation.references | 7. Ramachandran SS, George J, Skaria S, et al. (2018). Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans. Proceedings from Medical Imaging: Computer-Aided Diagnosis. 2018. https://doi.org/ 10.1117/12.2293699 | |
dc.relation.references | 8. Li X, Thrall JH, Digumarthy SR, et al. (2019). Deep learning-enabled system for rapid pneumothorax screening on chest CT. European Journal of Radiology, 120, 108692. https://doi.org/10.1016/j.ejrad.2019.108692 | |
dc.relation.references | 9. Ardila D, Kiraly AP, Bharadwaj S, et al. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med., 25, 954‑961. https://doi.org/10.1038/s41591-019-0447-x | |
dc.relation.references | 10. Park S, Lee SM, Kim N, et al. (2019). Application of deep learning – based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy. Eur Radiol, 29, 5341‑5348. https://doi.org/10.1007/s00330-019-06130-x | |
dc.relation.references | 11. Nasrullah N, Sang J, Alam MS, et al. (2019). Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Sensors, 19(17), 3722. https://doi.org/10.3390/s19173722 | |
dc.relation.references | 12. Humphries SM, Notary AM, Centeno JP, et al. (2020). Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology, 294(2), 434. https://doi.org/10.1148/radiol.2019191022 | |
dc.relation.references | 13. Masood A, Yang P, Sheng B, et al. (2020). Cloud-Based Automated Clinical Decision Support System for Detection and Diagnosis of Lung Cancer in Chest CT. IEEE Journal of Translational Engineering in Health and Medicine, 8, 1-13. https://doi.org/10.1109/JTEHM.2019.2955458 | |
dc.relation.references | 14. Wang X, Deng X, Fu Q, et al. (2020). A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT. IEEE Transactions on Medical Imaging, 39(8), 2615-2625. https://doi.org/10.1109/TMI.2020.2995965 | |
dc.relation.references | 15. Ko H, Chung H, Kang WS, et al. (2020). COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework With a Single Chest CT Image: Model Development and Validation. J Med Internet Res, 22(6), e19569. https://doi.org/10.2196/19569 | |
dc.relation.references | 16. Yang X, He X, Zhao J, et al. (2020). COVID-CT-Dataset: A CT Scan Dataset about COVID-19. https://doi.org/10.48550/ARXIV.2003.13865 | |
dc.relation.references | 17. He X, Yang X, Zhang S, et al. (2020). Sample-Efficient Deep Learning for COVID-19 Diagnosis Based on CT Scans. https://doi.org/10.1101/2020.04.13.20063941 | |
dc.relation.references | 18. Gozes O, Frid-Adar M, Sagie N, et al. Coronavirus Detection and Analysis on Chest CT with Deep Learning. https://doi.org/10.48550/ARXIV.2004.02640 | |
dc.relation.references | 19. Ni Q, Sun ZY, Qi L, et al. (2020). A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol, 30, 6517‑6527. https://doi.org/10.1007 %2Fs00330-020-07044-9 | |
dc.relation.references | 20. Bhandary A, Prabhu AG, Rajinikanth V, et al. (2020). Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images. Pattern Recognition Letters, 129, 271-278. https://doi.org/10.1016/j.patrec.2019.11.013 | |
dc.relation.references | 21. Fu M, Yi S, Zeng Y, et al. (2020). Deep Learning-Based Recognizing COVID-19 and other Common Infectious Diseases of the Lung by Chest CT Scan Images. https://doi.org/10.1101/2020.03.28.20046045 | |
dc.relation.references | 22. Javor D, Kaplan H, Kaplan A, et al. (2020). Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography. European Journal of Radiology, 2020, 133. | |
dc.relation.references | 23. He X, Wang S, Shi S. (2020). Benchmarking Deep Learning Models and Automated Model Design for COVID-19 Detection with Chest CT Scans. https://doi.org/10.1101/2020.06.08.20125963 | |
dc.relation.references | 24. Matsuyama E. (2020). A Deep Learning Interpretable Model for Novel Coronavirus Disease (COVID-19) Screening with Chest CT Images. Journal of Biomedical Science and Engineering, 13, 140-152. https://doi.org/10.4236/jbise.2020.137014. | |
dc.relation.references | 25. Li X, Zhou Y, Du P, et al. (2021). A deep learning system that generates quantitative CT reports for diagnosing pulmonary Tuberculosis. Appl Intell. 2021;51:4082‑4093. https://doi.org/10.1007/s10489-020-02051-1 | |
dc.relation.references | 26. Anwar T, Zakir S. (2021). Deep learning based diagnosis of COVID-19 using chest CT-scan images. https://doi.org/10.1109/INMIC50486.2020.9318212. | |
dc.relation.references | 27. Fontanellaz M, Ebner L, Huber A. (2021). A Deep-Learning Diagnostic Support System for the Detection of COVID-19 Using Chest Radiographs. Investigative Radiology, 56(6), 348-356. https://doi.org/10.1097/RLI.0000000000000748 | |
dc.relation.references | 28. Yousefzadeh M, Esfahanian P, Movahed SMS, et al. (2021). ai-corona: Radiologist-assistant deep learning framework for COVID-19 diagnosis in chest CT scans. PLOS ONE, 16(5), e0250952. https://doi.org/10.1371/journal.pone.0250952 | |
dc.relation.references | 29. Alshazly H, Linse C, Barth E, et al. (2021). Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning. Sensors, 21(2), 455. https://doi.org/10.3390/s21020455 | |
dc.relation.references | 30. Zhu Z, Xingming Z, Tao G, et al. (2021). Classification of COVID-19 by Compressed Chest CT Image through Deep Learning on a Large Patients Cohort. Interdiscip Sci Comput Life Sci, 13, 73‑82. https://doi.org/10.1007/s12539-020-00408-1 | |
dc.relation.references | 31. Pan F, Li L, Liu B, et al. (2021). A novel deep learning-based quantification of serial chest computed tomography in Coronavirus Disease 2019 (COVID-19). Sci Rep, 11, 417. https://doi.org/10.1038/s41598-020-80261-w | |
dc.relation.references | 32. Biswas S, Chatterjee S, Majee A, et al. (2021). Prediction of COVID-19 from Chest CT Images Using an Ensemble of Deep Learning Models. Applied Sciences, 11(15), 7004. https://doi.org/10.3390/app11157004 | |
dc.relation.references | 33. He X, Wang S, Chu X, et al. (2021). Automated Model Design and Benchmarking of 3D Deep Learning Models for COVID-19 Detection with Chest CT Scans. https://doi.org/10.48550/ARXIV.2101.05442 | |
dc.relation.references | 34. Zouch W, Sagga D, Echtioui A, et al. (2022). Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models. Ann Biomed Eng, 50, 825‑835. https://doi.org/10.1007/s10439-022-02958-5 | |
dc.relation.references | 35. Ortiz A, Trivedi A, Desbiens J, et al. (2022). Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci Rep, 12, 1716. https://doi.org/10.1038/s41598-022-05532-0 | |
dc.relation.references | 36. Baghdadi NA, Malki A, Abdelaliem SF, et al. (2022). An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Computers in Biology and Medicine, 144, 105383. https://doi.org/10.1016/j.compbiomed.2022.105383. | |
dc.relation.references | 37. Sadik F, Dastider AG, Subah MR, et al. (2022). A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images. Computers in Biology and Medicine, 149, 105806. https://doi.org/10.1016/j.compbiomed.2022.105806. | |
dc.relation.references | 38. Asif S, Wenhui Y, Jinhai S, et al. (2022). CVD19-Net: An Automated Deep Learning Model for COVID-19 Screening using Chest CT Images. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 2049-2058. https://doi.org/10.1109/BIBM55620.2022.9995590. | |
dc.relation.references | 39. Gupta K, Bajaj V. (2023). Deep learning models-based CT-scan image classification for automated screening of COVID-19. Biomedical Signal Processing and Control, 80(1), 104268. https://doi.org/10.1016/j.bspc.2022.104268. | |
dc.relation.references | 40. Attallah O. (2023). RADIC: A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics. Chemometrics and Intelligent Laboratory Systems, 223, 104750. https://doi.org/10.1016/j.chemolab.2022.104750. | |
dc.relation.references | 41. Huang G, Liu Z, van der Maaten L, et al. (2016). Densely Connected Convolutional Networks. https://doi.org/10.48550/arXiv.1608.06993 | |
dc.relation.references | 42. He L, Zhang X, Ren S. Sun J. (2015). Deep Residual Learning for Image Recognition. https://doi.org/10.48550/arXiv.1512.03385 | |
dc.relation.references | 43. Simonyan K, Zisserman A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. https://doi.org/10.48550/arXiv.1409.1556 | |
dc.relation.references | 44. Guo Y, Li Y, Feris R, Wang L, et al. (2019). Depthwise Convolution is All You Need for Learning Multiple Visual Domains. https://doi.org/10.48550/arXiv.1902.00927 | |
dc.relation.references | 45. Tan M, Le QV. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. https://doi.org/10.48550/arXiv.1905.11946 | |
dc.relation.references | 46. Mahdjoub E, Mohammad W, Lefevre T, et al. (2020). Admission chest CT score predicts 5-day outcome in patients with COVID-19. Intensive Care Med, 46, 1648‑1650. https://doi.org/10.1007/s00134-020-06118-y | |
dc.relation.references | 47. Bradley AP. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2. | |
dc.relation.referencesen | 1. WHO Coronavirus (COVID-19) Dashboard [Web resource]. Resource access mode: https://covid19.who.int. Accessed at 18 Feb 2024. | |
dc.relation.referencesen | 2. Lakhani, P, Sundaram, B. (2017). Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 284(2), 574-582. https://doi.org/10.1148/radiol.2017162326 | |
dc.relation.referencesen | 3. Carneiro G, Oakden-Rayner L, Bradley AP, et al. (2017). Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 130-134. https://doi.org/10.1109/ISBI.2017.7950485 | |
dc.relation.referencesen | 4. Zhou X, Takayama R, Wang S, et al. (2017). Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med. Phys., 44, 5221-5233. https://doi.org/10.1002/mp.12480 | |
dc.relation.referencesen | 5. Xie Y, Xia Y, Zhang J, et al. (2019). Knowledge-based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT. IEEE Transactions on Medical Imaging, 38(4), 991-1004. https://doi.org/10.1109/TMI.2018.2876510 | |
dc.relation.referencesen | 6. Nam JG, Park S, Hwang EJ, et al. (2019). Development and Validation of Deep Learning – based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology, 290(1), 218-228. https://doi.org/10.1148/radiol.2018180237 | |
dc.relation.referencesen | 7. Ramachandran SS, George J, Skaria S, et al. (2018). Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans. Proceedings from Medical Imaging: Computer-Aided Diagnosis. 2018. https://doi.org/ 10.1117/12.2293699 | |
dc.relation.referencesen | 8. Li X, Thrall JH, Digumarthy SR, et al. (2019). Deep learning-enabled system for rapid pneumothorax screening on chest CT. European Journal of Radiology, 120, 108692. https://doi.org/10.1016/j.ejrad.2019.108692 | |
dc.relation.referencesen | 9. Ardila D, Kiraly AP, Bharadwaj S, et al. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med., 25, 954‑961. https://doi.org/10.1038/s41591-019-0447-x | |
dc.relation.referencesen | 10. Park S, Lee SM, Kim N, et al. (2019). Application of deep learning – based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy. Eur Radiol, 29, 5341‑5348. https://doi.org/10.1007/s00330-019-06130-x | |
dc.relation.referencesen | 11. Nasrullah N, Sang J, Alam MS, et al. (2019). Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Sensors, 19(17), 3722. https://doi.org/10.3390/s19173722 | |
dc.relation.referencesen | 12. Humphries SM, Notary AM, Centeno JP, et al. (2020). Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology, 294(2), 434. https://doi.org/10.1148/radiol.2019191022 | |
dc.relation.referencesen | 13. Masood A, Yang P, Sheng B, et al. (2020). Cloud-Based Automated Clinical Decision Support System for Detection and Diagnosis of Lung Cancer in Chest CT. IEEE Journal of Translational Engineering in Health and Medicine, 8, 1-13. https://doi.org/10.1109/JTEHM.2019.2955458 | |
dc.relation.referencesen | 14. Wang X, Deng X, Fu Q, et al. (2020). A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT. IEEE Transactions on Medical Imaging, 39(8), 2615-2625. https://doi.org/10.1109/TMI.2020.2995965 | |
dc.relation.referencesen | 15. Ko H, Chung H, Kang WS, et al. (2020). COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework With a Single Chest CT Image: Model Development and Validation. J Med Internet Res, 22(6), e19569. https://doi.org/10.2196/19569 | |
dc.relation.referencesen | 16. Yang X, He X, Zhao J, et al. (2020). COVID-CT-Dataset: A CT Scan Dataset about COVID-19. https://doi.org/10.48550/ARXIV.2003.13865 | |
dc.relation.referencesen | 17. He X, Yang X, Zhang S, et al. (2020). Sample-Efficient Deep Learning for COVID-19 Diagnosis Based on CT Scans. https://doi.org/10.1101/2020.04.13.20063941 | |
dc.relation.referencesen | 18. Gozes O, Frid-Adar M, Sagie N, et al. Coronavirus Detection and Analysis on Chest CT with Deep Learning. https://doi.org/10.48550/ARXIV.2004.02640 | |
dc.relation.referencesen | 19. Ni Q, Sun ZY, Qi L, et al. (2020). A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol, 30, 6517‑6527. https://doi.org/10.1007 %2Fs00330-020-07044-9 | |
dc.relation.referencesen | 20. Bhandary A, Prabhu AG, Rajinikanth V, et al. (2020). Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images. Pattern Recognition Letters, 129, 271-278. https://doi.org/10.1016/j.patrec.2019.11.013 | |
dc.relation.referencesen | 21. Fu M, Yi S, Zeng Y, et al. (2020). Deep Learning-Based Recognizing COVID-19 and other Common Infectious Diseases of the Lung by Chest CT Scan Images. https://doi.org/10.1101/2020.03.28.20046045 | |
dc.relation.referencesen | 22. Javor D, Kaplan H, Kaplan A, et al. (2020). Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography. European Journal of Radiology, 2020, 133. | |
dc.relation.referencesen | 23. He X, Wang S, Shi S. (2020). Benchmarking Deep Learning Models and Automated Model Design for COVID-19 Detection with Chest CT Scans. https://doi.org/10.1101/2020.06.08.20125963 | |
dc.relation.referencesen | 24. Matsuyama E. (2020). A Deep Learning Interpretable Model for Novel Coronavirus Disease (COVID-19) Screening with Chest CT Images. Journal of Biomedical Science and Engineering, 13, 140-152. https://doi.org/10.4236/jbise.2020.137014. | |
dc.relation.referencesen | 25. Li X, Zhou Y, Du P, et al. (2021). A deep learning system that generates quantitative CT reports for diagnosing pulmonary Tuberculosis. Appl Intell. 2021;51:4082‑4093. https://doi.org/10.1007/s10489-020-02051-1 | |
dc.relation.referencesen | 26. Anwar T, Zakir S. (2021). Deep learning based diagnosis of COVID-19 using chest CT-scan images. https://doi.org/10.1109/INMIC50486.2020.9318212. | |
dc.relation.referencesen | 27. Fontanellaz M, Ebner L, Huber A. (2021). A Deep-Learning Diagnostic Support System for the Detection of COVID-19 Using Chest Radiographs. Investigative Radiology, 56(6), 348-356. https://doi.org/10.1097/RLI.0000000000000748 | |
dc.relation.referencesen | 28. Yousefzadeh M, Esfahanian P, Movahed SMS, et al. (2021). ai-corona: Radiologist-assistant deep learning framework for COVID-19 diagnosis in chest CT scans. PLOS ONE, 16(5), e0250952. https://doi.org/10.1371/journal.pone.0250952 | |
dc.relation.referencesen | 29. Alshazly H, Linse C, Barth E, et al. (2021). Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning. Sensors, 21(2), 455. https://doi.org/10.3390/s21020455 | |
dc.relation.referencesen | 30. Zhu Z, Xingming Z, Tao G, et al. (2021). Classification of COVID-19 by Compressed Chest CT Image through Deep Learning on a Large Patients Cohort. Interdiscip Sci Comput Life Sci, 13, 73‑82. https://doi.org/10.1007/s12539-020-00408-1 | |
dc.relation.referencesen | 31. Pan F, Li L, Liu B, et al. (2021). A novel deep learning-based quantification of serial chest computed tomography in Coronavirus Disease 2019 (COVID-19). Sci Rep, 11, 417. https://doi.org/10.1038/s41598-020-80261-w | |
dc.relation.referencesen | 32. Biswas S, Chatterjee S, Majee A, et al. (2021). Prediction of COVID-19 from Chest CT Images Using an Ensemble of Deep Learning Models. Applied Sciences, 11(15), 7004. https://doi.org/10.3390/app11157004 | |
dc.relation.referencesen | 33. He X, Wang S, Chu X, et al. (2021). Automated Model Design and Benchmarking of 3D Deep Learning Models for COVID-19 Detection with Chest CT Scans. https://doi.org/10.48550/ARXIV.2101.05442 | |
dc.relation.referencesen | 34. Zouch W, Sagga D, Echtioui A, et al. (2022). Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models. Ann Biomed Eng, 50, 825‑835. https://doi.org/10.1007/s10439-022-02958-5 | |
dc.relation.referencesen | 35. Ortiz A, Trivedi A, Desbiens J, et al. (2022). Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci Rep, 12, 1716. https://doi.org/10.1038/s41598-022-05532-0 | |
dc.relation.referencesen | 36. Baghdadi NA, Malki A, Abdelaliem SF, et al. (2022). An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Computers in Biology and Medicine, 144, 105383. https://doi.org/10.1016/j.compbiomed.2022.105383. | |
dc.relation.referencesen | 37. Sadik F, Dastider AG, Subah MR, et al. (2022). A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images. Computers in Biology and Medicine, 149, 105806. https://doi.org/10.1016/j.compbiomed.2022.105806. | |
dc.relation.referencesen | 38. Asif S, Wenhui Y, Jinhai S, et al. (2022). CVD19-Net: An Automated Deep Learning Model for COVID-19 Screening using Chest CT Images. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 2049-2058. https://doi.org/10.1109/BIBM55620.2022.9995590. | |
dc.relation.referencesen | 39. Gupta K, Bajaj V. (2023). Deep learning models-based CT-scan image classification for automated screening of COVID-19. Biomedical Signal Processing and Control, 80(1), 104268. https://doi.org/10.1016/j.bspc.2022.104268. | |
dc.relation.referencesen | 40. Attallah O. (2023). RADIC: A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics. Chemometrics and Intelligent Laboratory Systems, 223, 104750. https://doi.org/10.1016/j.chemolab.2022.104750. | |
dc.relation.referencesen | 41. Huang G, Liu Z, van der Maaten L, et al. (2016). Densely Connected Convolutional Networks. https://doi.org/10.48550/arXiv.1608.06993 | |
dc.relation.referencesen | 42. He L, Zhang X, Ren S. Sun J. (2015). Deep Residual Learning for Image Recognition. https://doi.org/10.48550/arXiv.1512.03385 | |
dc.relation.referencesen | 43. Simonyan K, Zisserman A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. https://doi.org/10.48550/arXiv.1409.1556 | |
dc.relation.referencesen | 44. Guo Y, Li Y, Feris R, Wang L, et al. (2019). Depthwise Convolution is All You Need for Learning Multiple Visual Domains. https://doi.org/10.48550/arXiv.1902.00927 | |
dc.relation.referencesen | 45. Tan M, Le QV. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. https://doi.org/10.48550/arXiv.1905.11946 | |
dc.relation.referencesen | 46. Mahdjoub E, Mohammad W, Lefevre T, et al. (2020). Admission chest CT score predicts 5-day outcome in patients with COVID-19. Intensive Care Med, 46, 1648‑1650. https://doi.org/10.1007/s00134-020-06118-y | |
dc.relation.referencesen | 47. Bradley AP. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2. | |
dc.relation.uri | https://covid19.who.int | |
dc.relation.uri | https://doi.org/10.1148/radiol.2017162326 | |
dc.relation.uri | https://doi.org/10.1109/ISBI.2017.7950485 | |
dc.relation.uri | https://doi.org/10.1002/mp.12480 | |
dc.relation.uri | https://doi.org/10.1109/TMI.2018.2876510 | |
dc.relation.uri | https://doi.org/10.1148/radiol.2018180237 | |
dc.relation.uri | https://doi.org/ | |
dc.relation.uri | https://doi.org/10.1016/j.ejrad.2019.108692 | |
dc.relation.uri | https://doi.org/10.1038/s41591-019-0447-x | |
dc.relation.uri | https://doi.org/10.1007/s00330-019-06130-x | |
dc.relation.uri | https://doi.org/10.3390/s19173722 | |
dc.relation.uri | https://doi.org/10.1148/radiol.2019191022 | |
dc.relation.uri | https://doi.org/10.1109/JTEHM.2019.2955458 | |
dc.relation.uri | https://doi.org/10.1109/TMI.2020.2995965 | |
dc.relation.uri | https://doi.org/10.2196/19569 | |
dc.relation.uri | https://doi.org/10.48550/ARXIV.2003.13865 | |
dc.relation.uri | https://doi.org/10.1101/2020.04.13.20063941 | |
dc.relation.uri | https://doi.org/10.48550/ARXIV.2004.02640 | |
dc.relation.uri | https://doi.org/10.1007 | |
dc.relation.uri | https://doi.org/10.1016/j.patrec.2019.11.013 | |
dc.relation.uri | https://doi.org/10.1101/2020.03.28.20046045 | |
dc.relation.uri | https://doi.org/10.1101/2020.06.08.20125963 | |
dc.relation.uri | https://doi.org/10.4236/jbise.2020.137014 | |
dc.relation.uri | https://doi.org/10.1007/s10489-020-02051-1 | |
dc.relation.uri | https://doi.org/10.1109/INMIC50486.2020.9318212 | |
dc.relation.uri | https://doi.org/10.1097/RLI.0000000000000748 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0250952 | |
dc.relation.uri | https://doi.org/10.3390/s21020455 | |
dc.relation.uri | https://doi.org/10.1007/s12539-020-00408-1 | |
dc.relation.uri | https://doi.org/10.1038/s41598-020-80261-w | |
dc.relation.uri | https://doi.org/10.3390/app11157004 | |
dc.relation.uri | https://doi.org/10.48550/ARXIV.2101.05442 | |
dc.relation.uri | https://doi.org/10.1007/s10439-022-02958-5 | |
dc.relation.uri | https://doi.org/10.1038/s41598-022-05532-0 | |
dc.relation.uri | https://doi.org/10.1016/j.compbiomed.2022.105383 | |
dc.relation.uri | https://doi.org/10.1016/j.compbiomed.2022.105806 | |
dc.relation.uri | https://doi.org/10.1109/BIBM55620.2022.9995590 | |
dc.relation.uri | https://doi.org/10.1016/j.bspc.2022.104268 | |
dc.relation.uri | https://doi.org/10.1016/j.chemolab.2022.104750 | |
dc.relation.uri | https://doi.org/10.48550/arXiv.1608.06993 | |
dc.relation.uri | https://doi.org/10.48550/arXiv.1512.03385 | |
dc.relation.uri | https://doi.org/10.48550/arXiv.1409.1556 | |
dc.relation.uri | https://doi.org/10.48550/arXiv.1902.00927 | |
dc.relation.uri | https://doi.org/10.48550/arXiv.1905.11946 | |
dc.relation.uri | https://doi.org/10.1007/s00134-020-06118-y | |
dc.relation.uri | https://doi.org/10.1016/S0031-3203(96)00142-2 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | аналіз знімків комп’ютерної томографії | |
dc.subject | нейронні мережі | |
dc.subject | глибоке навчання | |
dc.subject | COVID | |
dc.subject | Computed tomography image analysis | |
dc.subject | Neural networks | |
dc.subject | Deep learning | |
dc.subject | COVID | |
dc.subject.udc | 004.932.2 | |
dc.title | Review of disease identification methods based on computed tomography imagery | |
dc.title.alternative | Огляд методів ідентифікації захворювань за допомогою знімків комп’ютерної томографії | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1