Position Controller Design and Implementation of Ball and Beam System with SMC and PD Control Methods

dc.citation.epage126
dc.citation.issue2
dc.citation.spage120
dc.contributor.affiliationУніверситет Муш Алпарслан
dc.contributor.affiliationMus Alparslan University
dc.contributor.authorАбут, Тайфун
dc.contributor.authorAbut, Tayfun
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-18T07:27:27Z
dc.date.available2023-09-18T07:27:27Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractСтаном на сьогодні запропоновано і перевірено декілька методів керування багатьма нелінійними та нестійкими системами. У цьому дослідженні використано ковзний режим керування та пропорційно-диференціальний (ПД) регулятор, які використовують для керування положенням та моделювання системи “куля-балка”, що є базовою системою для перевірки методів керування. Такі системи є нелінійними та нестійкими за своєю природою, і на них впливають зовнішні збурення. У цій роботі досліджено систему із застосуванням класичного ПД регулятора та ковзного режиму керування. Результати були оцінені із застосування інтегральної квадратичної оцінки. Результати представлені у вигляді графіків та таблиць. Крім цього, виконано порівняння та аналіз результатів.
dc.description.abstractToday, several methods are proposed and tested for controlling many nonlinear and unstable systems. This study employed the sliding mode control (SMC) and proportional-derivative (PD), which are used to control the position and modeling of ball and beam system that is a fundamental system used to test the control methods. Such systems are nonlinear and unstable due to their nature. Therefore, these systems are affected by external disturbances and this leads to a decrease in the control quality. The study tested the system by utilizing the classical PD and SMC methods, and the results were assessed by employing the Integral-Square-Error (ISE) performance criterion. The system results were provided as graphics and tables. Besides, the results were compared and analyzed.
dc.format.extent120-126
dc.format.pages7
dc.identifier.citationAbut T. Position Controller Design and Implementation of Ball and Beam System with SMC and PD Control Methods / Tayfun Abut // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 2. — P. 120–126.
dc.identifier.citationenAbut T. Position Controller Design and Implementation of Ball and Beam System with SMC and PD Control Methods / Tayfun Abut // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 2. — P. 120–126.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60121
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (6), 2020
dc.relation.references[1] Hauser, J., Sastry, S., and Kokotovic, P. (1992). Nonlinear control via approximate input-output linearization: The ball and beam example. IEEE transactions on automatic control, 37(3), 392–398.
dc.relation.references[2] Teel, A. R. (1993, June). Semi-global stabilization of the ball and beam 'using output' feedback. In 1993 American Control Conference (pp. 2577-2581). IEEE.
dc.relation.references[3] Huang, J., and Lin, C. F. (1995, June). Robust nonlinear control of the ball and beam system. In Proceedings of 1995 American Control Conference-ACC'95 (Vol. 1, pp. 306–310). IEEE.
dc.relation.references[4] Yi, J., Yubazaki, N., and Hirota, K. (2001, July). Stabilization control of ball and beam systems. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569) (Vol. 4, pp. 2229–2234). IEEE.
dc.relation.references[5] Andreev, F., Auckly, D., Gosavi, S., Kapitanski, L., Kelkar, A., and White, W. (2002). Matching, linear systems, and the ball and beam. Automatica, 38(12), 2147–2152.
dc.relation.references[6] Hirschorn, R. M. (2002). Incremental sliding mode control of the ball and beam. IEEE Transactions on Automatic Control, 47(10), 1696-1700.
dc.relation.references[7] Yu, W., and Ortiz, F. (2005, August). Stability analysis of PD regulation for ball and beam system. In Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005. (pp. 517–522). IEEE.
dc.relation.references[8] Almutairi, N. B., and Zribi, M. (2010). On the sliding mode control of a ball on a beam system. Nonlinear dynamics, 59(1–2), 221.
dc.relation.references[9] Chang, Y. H., Chang, C. W., Tao, C. W., Lin, H. W., and Taur, J. S. (2012). Fuzzy sliding-mode control for ball and beam system with fuzzy ant colony optimization. Expert Systems with Applications, 39(3), 3624–3633.
dc.relation.references[10] Chang, Y. H., Chan, W. S., and Chang, C. W. (2012). TS fuzzy-model-based adaptive dynamic surface control for ball and beam system. IEEE transactions on industrial electronics, 60(6), 2251–2263.
dc.relation.references[11] De La Torre, L., Guinaldo, M., Heradio, R., and Dormido, S. (2015). The ball and beam system: A case study of virtual and remote lab enhancement with moodle. IEEE Transactions on Industrial Informatics, 11(4), 934–945.
dc.relation.references[12] Peraza, C., Valdez, F., Castro, J. R., and Castillo, O. (2018). Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Advances in Operations Research, 2018.
dc.relation.references[13] Mehedi, I. M., Al-Saggaf, U. M., Mansouri, R., and Bettayeb, M. (2019). Two degrees of freedom fractional controller design: Application to the ball and beam system. Measurement, 135, 13–22.
dc.relation.references[14] Du, Y., Cao, W., She, J., Wu, M., Fang, M., and Kawata, S. (2019). Disturbance Rejection and Control System Design Using Improved Equivalent Input Disturbance Approach. IEEE Transactions on Industrial Electronics, 67(4), 3013–3023.
dc.relation.references[15] Rahbar, F., and Kalat, A. A. (2020). An Observer-Based Robust Adaptive Fuzzy Back-Stepping Control of Ball and Beam System. Arabian Journal for Science and Engineering, 45(3), 1397–1409.
dc.relation.references[16] Hazewinkel, Michiel, ed. (2001), “Lagrange equations (in mechanics)”, Encyclopedia of Mathematics, Springer, ISBN 978-1-55.
dc.relation.references[17] Abut, T.and Soyguder, S. (2018). Interface Design and Performance Analysis for a Haptic Robot. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(2), 553–560.
dc.relation.references[18] Ziegler, J. G., and Nichols, N. B. (1942). Optimum settings for automatic controllers. trans. ASME, 64(11).
dc.relation.references[19] Utkin, V. I. (1993). Sliding mode control design principles and applications to electric drives. IEEE transactions on industrial electronics, 40(1), 23–36.
dc.relation.references[20] Utkin, V., Guldner, J., and Shijun, M. (1999). Sliding mode control in electro-mechanical systems (Vol. 34). CRC press.
dc.relation.references[21] Hüseyinoğlu, M., and Abut T. (2018). Dynamic Model and Control of 2-DOF Robotic Arm. European Journal of Technique, 8(2), 141–150.
dc.relation.referencesen[1] Hauser, J., Sastry, S., and Kokotovic, P. (1992). Nonlinear control via approximate input-output linearization: The ball and beam example. IEEE transactions on automatic control, 37(3), 392–398.
dc.relation.referencesen[2] Teel, A. R. (1993, June). Semi-global stabilization of the ball and beam 'using output' feedback. In 1993 American Control Conference (pp. 2577-2581). IEEE.
dc.relation.referencesen[3] Huang, J., and Lin, C. F. (1995, June). Robust nonlinear control of the ball and beam system. In Proceedings of 1995 American Control Conference-ACC'95 (Vol. 1, pp. 306–310). IEEE.
dc.relation.referencesen[4] Yi, J., Yubazaki, N., and Hirota, K. (2001, July). Stabilization control of ball and beam systems. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569) (Vol. 4, pp. 2229–2234). IEEE.
dc.relation.referencesen[5] Andreev, F., Auckly, D., Gosavi, S., Kapitanski, L., Kelkar, A., and White, W. (2002). Matching, linear systems, and the ball and beam. Automatica, 38(12), 2147–2152.
dc.relation.referencesen[6] Hirschorn, R. M. (2002). Incremental sliding mode control of the ball and beam. IEEE Transactions on Automatic Control, 47(10), 1696-1700.
dc.relation.referencesen[7] Yu, W., and Ortiz, F. (2005, August). Stability analysis of PD regulation for ball and beam system. In Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005. (pp. 517–522). IEEE.
dc.relation.referencesen[8] Almutairi, N. B., and Zribi, M. (2010). On the sliding mode control of a ball on a beam system. Nonlinear dynamics, 59(1–2), 221.
dc.relation.referencesen[9] Chang, Y. H., Chang, C. W., Tao, C. W., Lin, H. W., and Taur, J. S. (2012). Fuzzy sliding-mode control for ball and beam system with fuzzy ant colony optimization. Expert Systems with Applications, 39(3), 3624–3633.
dc.relation.referencesen[10] Chang, Y. H., Chan, W. S., and Chang, C. W. (2012). TS fuzzy-model-based adaptive dynamic surface control for ball and beam system. IEEE transactions on industrial electronics, 60(6), 2251–2263.
dc.relation.referencesen[11] De La Torre, L., Guinaldo, M., Heradio, R., and Dormido, S. (2015). The ball and beam system: A case study of virtual and remote lab enhancement with moodle. IEEE Transactions on Industrial Informatics, 11(4), 934–945.
dc.relation.referencesen[12] Peraza, C., Valdez, F., Castro, J. R., and Castillo, O. (2018). Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Advances in Operations Research, 2018.
dc.relation.referencesen[13] Mehedi, I. M., Al-Saggaf, U. M., Mansouri, R., and Bettayeb, M. (2019). Two degrees of freedom fractional controller design: Application to the ball and beam system. Measurement, 135, 13–22.
dc.relation.referencesen[14] Du, Y., Cao, W., She, J., Wu, M., Fang, M., and Kawata, S. (2019). Disturbance Rejection and Control System Design Using Improved Equivalent Input Disturbance Approach. IEEE Transactions on Industrial Electronics, 67(4), 3013–3023.
dc.relation.referencesen[15] Rahbar, F., and Kalat, A. A. (2020). An Observer-Based Robust Adaptive Fuzzy Back-Stepping Control of Ball and Beam System. Arabian Journal for Science and Engineering, 45(3), 1397–1409.
dc.relation.referencesen[16] Hazewinkel, Michiel, ed. (2001), "Lagrange equations (in mechanics)", Encyclopedia of Mathematics, Springer, ISBN 978-1-55.
dc.relation.referencesen[17] Abut, T.and Soyguder, S. (2018). Interface Design and Performance Analysis for a Haptic Robot. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(2), 553–560.
dc.relation.referencesen[18] Ziegler, J. G., and Nichols, N. B. (1942). Optimum settings for automatic controllers. trans. ASME, 64(11).
dc.relation.referencesen[19] Utkin, V. I. (1993). Sliding mode control design principles and applications to electric drives. IEEE transactions on industrial electronics, 40(1), 23–36.
dc.relation.referencesen[20] Utkin, V., Guldner, J., and Shijun, M. (1999). Sliding mode control in electro-mechanical systems (Vol. 34). CRC press.
dc.relation.referencesen[21] Hüseyinoğlu, M., and Abut T. (2018). Dynamic Model and Control of 2-DOF Robotic Arm. European Journal of Technique, 8(2), 141–150.
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectкуля-балка
dc.subjectмоделювання
dc.subjectкерування
dc.subjectковзний режим керування
dc.subjectпропорційно-диференціальний
dc.subjectінтегральна квадратична оцінка
dc.subjectball and beam
dc.subjectmodeling
dc.subjectsliding mode control
dc.subjectproportional-derivative control
dc.subjectintegral-square-error
dc.titlePosition Controller Design and Implementation of Ball and Beam System with SMC and PD Control Methods
dc.title.alternativeПроєктування та впровадження регулятора положення системи “куля-балка” методами ковзного режиму та ПД-регулювання
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v6n2_Abut_T-Position_Controller_Design_120-126.pdf
Size:
454.03 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v6n2_Abut_T-Position_Controller_Design_120-126__COVER.png
Size:
1.1 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: