Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid

dc.citation.epage14
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage8
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет імені Івана Франка
dc.contributor.affiliationІнститут високомолекулярної хімії Академії наук Чеської Республіки
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.affiliationInstitute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic
dc.contributor.authorКостюк, Р. Р.
dc.contributor.authorГорак, Ю. І.
dc.contributor.authorВеличківська, Н.
dc.contributor.authorСобечко, І. Б.
dc.contributor.authorПишна, Д. Б.
dc.contributor.authorДібрівний, В. М.
dc.contributor.authorKostiuk, R. R.
dc.contributor.authorHorak, Y. I.
dc.contributor.authorVelychkivska, N.
dc.contributor.authorSobechko, I. B.
dc.contributor.authorPyshna, D. B.
dc.contributor.authorDibrivnyi, V. M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:44Z
dc.date.available2024-02-09T09:24:44Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractЕкспериментальними методами визначено температурну залежність тиску насиченої та енергію згорання 2-метил-5-фенілфуран-3-карбонової кислоти. На основі отриманих даних розраховано величини ентальпій згорання та утворення в конденсованому стані. Проведено перерахунок ентальпії сублімації до 298 К. Поповнено адитивну схему Бенсона новими фрагментами для розрахунку ентальпій утворення у газоподібному стані. Проаналізовано можливість застосування метода Джобака для розрахунку ентальпій утворення арилфуранів у газоподібному стані.
dc.description.abstractThe temperature dependence of the saturated vapor pressure and the combustion energy of 2-methyl-5-phenylfuran-3-carboxylic acid were determined by experimental methods. Based on the obtained data, the values of the enthalpies of combustion and formation in the condensed state were calculated. The enthalpy of sublimation was recalculated to 298 K. The additive Benson scheme is supplemented with new fragments for calculating the enthalpies of formation in the gaseous state. The possibility of using the Joback method to calculate the enthalpies of formation of aryl furans in the gaseous state is analyzed.
dc.format.extent8-14
dc.format.pages7
dc.identifier.citationThermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid / R. R. Kostiuk, Y. I. Horak, N. Velychkivska, I. B. Sobechko, D. B. Pyshna, V. M. Dibrivnyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 8–14.
dc.identifier.citationenThermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid / R. R. Kostiuk, Y. I. Horak, N. Velychkivska, I. B. Sobechko, D. B. Pyshna, V. M. Dibrivnyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 8–14.
dc.identifier.doidoi.org/10.23939/ctas2023.01.008
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61182
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Moya-Garzón, M. D., Higueras, M, Peñalver C., et al. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type
dc.relation.references2. J. Med. Chem, 61, 7144–7167. doi:10.1021/acs.jmedchem.8b0039.
dc.relation.references3. Darren, R. W., Myung-Ryul, L., Young-Ah Song, et al. (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. So, 129(30), 9258–9259. doi: 10.1021/ja072817z.
dc.relation.references4. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin, et al. (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett, 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2.
dc.relation.references5. Karateev, A., Koryagin, A., Litvinov, D., et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23.
dc.relation.references6. Neuhaus, W. C., Jemison, А., Kozlowski M. (2019). Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1–7. doi: 10.1021/acscatal.9b02608.
dc.relation.references7. Wang, Y., Furukawa, S., Fu, X., Ning, Y. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1–97. doi: 10.1021/acscatal.9b03744.
dc.relation.references8. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, 2 (2), 74–80. doi: 10.22606/mocr.2017.22006.
dc.relation.references9. Dibrivnyi, V., Sobechko, I., Puniak, M., et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal, 9:67, 1–8. doi: 10.1186/s13065-015-0144-x.
dc.relation.references10. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 105, 1–11. doi: 10.1186/s13065-019-0619-2.
dc.relation.references11. Sobechko, I., Horak, Y., Dibrivnyi, V., Goshko, L., Kostyk, R. (2020). Thermodynamic properties of 2-methyl-5-(4-methylphenyl)-3-furancarboxylic acids. Visnyk of the Lviv University. Series Chemistry, 61(2), 314. https://doi.org/10.30970/vch.6102.314.
dc.relation.references12. Sobechko, I. B., Dibrivnyi ,V. M., Gorak, Yu. I., Goshko, L.V. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5 (2), 30–36. doi: 10.23939/ctas2022.02.030.
dc.relation.references13. Ribeiro da Silva, A. V. M., Monte, J. S. M. (1990). The construction, testing and use of a new Knudsen effusion apparatus. Thermochimica Acta, 171, 169–183. doi: 10.1016/0040-6031(90)87017-7.
dc.relation.references14. Ginkel, C. H. D. van, Kruif, C. G. de, Waal, F. E. B. de. (2001). The need for temperature control in effusion experiments (and application to heat of sublimation determination). Journal of Physics E: Scientific Instruments, 8(6), 490–492. doi:10.1088/0022-3735/8/6/018.
dc.relation.references15. Rossini, F. D. (1956). Experimental Thermochemistry. Interscience Publishers, 2, 326.
dc.relation.references16. http://www.codata.info/resources/databases/key1.html.
dc.relation.references17. Chickos, J. S., Acree, W. E. (2003). Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002. Journal of Physical and Chemical Reference Data, 32(2), 519–878. doi: 10.1063/1.1529214.
dc.relation.references18. Sobechko, I. (2016). Сalculation method of heat capacity change during organic compounds vaporization and sublimation. Chemistry & Chemical technology, 10(1), 27–33. doi: 10.23939/chcht10.01.027.
dc.relation.references19. Benson, S. W. (1965). III – Bond energies. Journal of Chemical Education, 42(9), 502. doi:10.1021/ed042p502.
dc.relation.references20. https://en.wikipedia.org/wiki/Joback_method.
dc.relation.references21. Ribeiro, da Silva, M. A. V., Amaral, L. M. P. F. (2009). Standard molar enthalpies of formation of 2- furancarbonitrile, 2-acetylfuran, and 3-Furaldehyde. The Journal of Chemical Thermodynamics, 41(1), 26–29. https://doi.org/10.1016/j.jct.2008.08.004.
dc.relation.references22. Roux, M. V., Temprado, M., Jiménez, P., Pérez- Parajón, Notario, R. (2003). Thermochemistry of Furancarboxylic Acids. The Journal of Physical Chemistry A, 107(51), 11460–11467. doi:10.1021/jp030772s.
dc.relation.references23. Ribeiro da Silva, M. A. V., Amaral, L. M. P. F. (2010). Standard molar enthalpies of formation of some methylfuran derivatives. Journal of Thermal Analysis and Calorimetry, 100(2), 375–380. doi:10.1007/s10973-009-0636-9.
dc.relation.referencesen1. Moya-Garzón, M. D., Higueras, M, Peñalver C., et al. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type
dc.relation.referencesen2. J. Med. Chem, 61, 7144–7167. doi:10.1021/acs.jmedchem.8b0039.
dc.relation.referencesen3. Darren, R. W., Myung-Ryul, L., Young-Ah Song, et al. (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. So, 129(30), 9258–9259. doi: 10.1021/ja072817z.
dc.relation.referencesen4. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin, et al. (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett, 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2.
dc.relation.referencesen5. Karateev, A., Koryagin, A., Litvinov, D., et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23.
dc.relation.referencesen6. Neuhaus, W. C., Jemison, A., Kozlowski M. (2019). Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1–7. doi: 10.1021/acscatal.9b02608.
dc.relation.referencesen7. Wang, Y., Furukawa, S., Fu, X., Ning, Y. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1–97. doi: 10.1021/acscatal.9b03744.
dc.relation.referencesen8. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, 2 (2), 74–80. doi: 10.22606/mocr.2017.22006.
dc.relation.referencesen9. Dibrivnyi, V., Sobechko, I., Puniak, M., et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal, 9:67, 1–8. doi: 10.1186/s13065-015-0144-x.
dc.relation.referencesen10. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 105, 1–11. doi: 10.1186/s13065-019-0619-2.
dc.relation.referencesen11. Sobechko, I., Horak, Y., Dibrivnyi, V., Goshko, L., Kostyk, R. (2020). Thermodynamic properties of 2-methyl-5-(4-methylphenyl)-3-furancarboxylic acids. Visnyk of the Lviv University. Series Chemistry, 61(2), 314. https://doi.org/10.30970/vch.6102.314.
dc.relation.referencesen12. Sobechko, I. B., Dibrivnyi ,V. M., Gorak, Yu. I., Goshko, L.V. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5 (2), 30–36. doi: 10.23939/ctas2022.02.030.
dc.relation.referencesen13. Ribeiro da Silva, A. V. M., Monte, J. S. M. (1990). The construction, testing and use of a new Knudsen effusion apparatus. Thermochimica Acta, 171, 169–183. doi: 10.1016/0040-6031(90)87017-7.
dc.relation.referencesen14. Ginkel, C. H. D. van, Kruif, C. G. de, Waal, F. E. B. de. (2001). The need for temperature control in effusion experiments (and application to heat of sublimation determination). Journal of Physics E: Scientific Instruments, 8(6), 490–492. doi:10.1088/0022-3735/8/6/018.
dc.relation.referencesen15. Rossini, F. D. (1956). Experimental Thermochemistry. Interscience Publishers, 2, 326.
dc.relation.referencesen16. http://www.codata.info/resources/databases/key1.html.
dc.relation.referencesen17. Chickos, J. S., Acree, W. E. (2003). Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002. Journal of Physical and Chemical Reference Data, 32(2), 519–878. doi: 10.1063/1.1529214.
dc.relation.referencesen18. Sobechko, I. (2016). Salculation method of heat capacity change during organic compounds vaporization and sublimation. Chemistry & Chemical technology, 10(1), 27–33. doi: 10.23939/chcht10.01.027.
dc.relation.referencesen19. Benson, S. W. (1965). III – Bond energies. Journal of Chemical Education, 42(9), 502. doi:10.1021/ed042p502.
dc.relation.referencesen20. https://en.wikipedia.org/wiki/Joback_method.
dc.relation.referencesen21. Ribeiro, da Silva, M. A. V., Amaral, L. M. P. F. (2009). Standard molar enthalpies of formation of 2- furancarbonitrile, 2-acetylfuran, and 3-Furaldehyde. The Journal of Chemical Thermodynamics, 41(1), 26–29. https://doi.org/10.1016/j.jct.2008.08.004.
dc.relation.referencesen22. Roux, M. V., Temprado, M., Jiménez, P., Pérez- Parajón, Notario, R. (2003). Thermochemistry of Furancarboxylic Acids. The Journal of Physical Chemistry A, 107(51), 11460–11467. doi:10.1021/jp030772s.
dc.relation.referencesen23. Ribeiro da Silva, M. A. V., Amaral, L. M. P. F. (2010). Standard molar enthalpies of formation of some methylfuran derivatives. Journal of Thermal Analysis and Calorimetry, 100(2), 375–380. doi:10.1007/s10973-009-0636-9.
dc.relation.urihttps://doi.org/10.30970/vch.6102.314
dc.relation.urihttp://www.codata.info/resources/databases/key1.html
dc.relation.urihttps://en.wikipedia.org/wiki/Joback_method
dc.relation.urihttps://doi.org/10.1016/j.jct.2008.08.004
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectенергія згорання
dc.subjectентальпія згорання
dc.subjectентальпія утворення
dc.subjectентальпія сублімації
dc.subject2-метил-5-фенілфуран-3-карбонова кислота
dc.subjectcombustion energy
dc.subjectenthalpy of combustion
dc.subjectenthalpy of formation
dc.subjectenthalpy of sublimation
dc.subject2-methyl-5-phenylfuran-3-carboxylic acid
dc.titleThermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid
dc.title.alternativeТермодинамічні властивості 2-метил-5-фенілфуран-3-карбонової кислоти
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Kostiuk_R_R-Thermodynamic_properties_8-14.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Kostiuk_R_R-Thermodynamic_properties_8-14__COVER.png
Size:
446.35 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.96 KB
Format:
Plain Text
Description: