Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid
dc.citation.epage | 14 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
dc.citation.spage | 8 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний університет імені Івана Франка | |
dc.contributor.affiliation | Інститут високомолекулярної хімії Академії наук Чеської Республіки | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.affiliation | Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic | |
dc.contributor.author | Костюк, Р. Р. | |
dc.contributor.author | Горак, Ю. І. | |
dc.contributor.author | Величківська, Н. | |
dc.contributor.author | Собечко, І. Б. | |
dc.contributor.author | Пишна, Д. Б. | |
dc.contributor.author | Дібрівний, В. М. | |
dc.contributor.author | Kostiuk, R. R. | |
dc.contributor.author | Horak, Y. I. | |
dc.contributor.author | Velychkivska, N. | |
dc.contributor.author | Sobechko, I. B. | |
dc.contributor.author | Pyshna, D. B. | |
dc.contributor.author | Dibrivnyi, V. M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T09:24:44Z | |
dc.date.available | 2024-02-09T09:24:44Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Експериментальними методами визначено температурну залежність тиску насиченої та енергію згорання 2-метил-5-фенілфуран-3-карбонової кислоти. На основі отриманих даних розраховано величини ентальпій згорання та утворення в конденсованому стані. Проведено перерахунок ентальпії сублімації до 298 К. Поповнено адитивну схему Бенсона новими фрагментами для розрахунку ентальпій утворення у газоподібному стані. Проаналізовано можливість застосування метода Джобака для розрахунку ентальпій утворення арилфуранів у газоподібному стані. | |
dc.description.abstract | The temperature dependence of the saturated vapor pressure and the combustion energy of 2-methyl-5-phenylfuran-3-carboxylic acid were determined by experimental methods. Based on the obtained data, the values of the enthalpies of combustion and formation in the condensed state were calculated. The enthalpy of sublimation was recalculated to 298 K. The additive Benson scheme is supplemented with new fragments for calculating the enthalpies of formation in the gaseous state. The possibility of using the Joback method to calculate the enthalpies of formation of aryl furans in the gaseous state is analyzed. | |
dc.format.extent | 8-14 | |
dc.format.pages | 7 | |
dc.identifier.citation | Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid / R. R. Kostiuk, Y. I. Horak, N. Velychkivska, I. B. Sobechko, D. B. Pyshna, V. M. Dibrivnyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 8–14. | |
dc.identifier.citationen | Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid / R. R. Kostiuk, Y. I. Horak, N. Velychkivska, I. B. Sobechko, D. B. Pyshna, V. M. Dibrivnyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 8–14. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.01.008 | |
dc.identifier.issn | 2617-7307 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61182 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 1 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (6), 2023 | |
dc.relation.references | 1. Moya-Garzón, M. D., Higueras, M, Peñalver C., et al. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type | |
dc.relation.references | 2. J. Med. Chem, 61, 7144–7167. doi:10.1021/acs.jmedchem.8b0039. | |
dc.relation.references | 3. Darren, R. W., Myung-Ryul, L., Young-Ah Song, et al. (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. So, 129(30), 9258–9259. doi: 10.1021/ja072817z. | |
dc.relation.references | 4. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin, et al. (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett, 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2. | |
dc.relation.references | 5. Karateev, A., Koryagin, A., Litvinov, D., et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23. | |
dc.relation.references | 6. Neuhaus, W. C., Jemison, А., Kozlowski M. (2019). Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1–7. doi: 10.1021/acscatal.9b02608. | |
dc.relation.references | 7. Wang, Y., Furukawa, S., Fu, X., Ning, Y. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1–97. doi: 10.1021/acscatal.9b03744. | |
dc.relation.references | 8. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, 2 (2), 74–80. doi: 10.22606/mocr.2017.22006. | |
dc.relation.references | 9. Dibrivnyi, V., Sobechko, I., Puniak, M., et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal, 9:67, 1–8. doi: 10.1186/s13065-015-0144-x. | |
dc.relation.references | 10. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 105, 1–11. doi: 10.1186/s13065-019-0619-2. | |
dc.relation.references | 11. Sobechko, I., Horak, Y., Dibrivnyi, V., Goshko, L., Kostyk, R. (2020). Thermodynamic properties of 2-methyl-5-(4-methylphenyl)-3-furancarboxylic acids. Visnyk of the Lviv University. Series Chemistry, 61(2), 314. https://doi.org/10.30970/vch.6102.314. | |
dc.relation.references | 12. Sobechko, I. B., Dibrivnyi ,V. M., Gorak, Yu. I., Goshko, L.V. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5 (2), 30–36. doi: 10.23939/ctas2022.02.030. | |
dc.relation.references | 13. Ribeiro da Silva, A. V. M., Monte, J. S. M. (1990). The construction, testing and use of a new Knudsen effusion apparatus. Thermochimica Acta, 171, 169–183. doi: 10.1016/0040-6031(90)87017-7. | |
dc.relation.references | 14. Ginkel, C. H. D. van, Kruif, C. G. de, Waal, F. E. B. de. (2001). The need for temperature control in effusion experiments (and application to heat of sublimation determination). Journal of Physics E: Scientific Instruments, 8(6), 490–492. doi:10.1088/0022-3735/8/6/018. | |
dc.relation.references | 15. Rossini, F. D. (1956). Experimental Thermochemistry. Interscience Publishers, 2, 326. | |
dc.relation.references | 16. http://www.codata.info/resources/databases/key1.html. | |
dc.relation.references | 17. Chickos, J. S., Acree, W. E. (2003). Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002. Journal of Physical and Chemical Reference Data, 32(2), 519–878. doi: 10.1063/1.1529214. | |
dc.relation.references | 18. Sobechko, I. (2016). Сalculation method of heat capacity change during organic compounds vaporization and sublimation. Chemistry & Chemical technology, 10(1), 27–33. doi: 10.23939/chcht10.01.027. | |
dc.relation.references | 19. Benson, S. W. (1965). III – Bond energies. Journal of Chemical Education, 42(9), 502. doi:10.1021/ed042p502. | |
dc.relation.references | 20. https://en.wikipedia.org/wiki/Joback_method. | |
dc.relation.references | 21. Ribeiro, da Silva, M. A. V., Amaral, L. M. P. F. (2009). Standard molar enthalpies of formation of 2- furancarbonitrile, 2-acetylfuran, and 3-Furaldehyde. The Journal of Chemical Thermodynamics, 41(1), 26–29. https://doi.org/10.1016/j.jct.2008.08.004. | |
dc.relation.references | 22. Roux, M. V., Temprado, M., Jiménez, P., Pérez- Parajón, Notario, R. (2003). Thermochemistry of Furancarboxylic Acids. The Journal of Physical Chemistry A, 107(51), 11460–11467. doi:10.1021/jp030772s. | |
dc.relation.references | 23. Ribeiro da Silva, M. A. V., Amaral, L. M. P. F. (2010). Standard molar enthalpies of formation of some methylfuran derivatives. Journal of Thermal Analysis and Calorimetry, 100(2), 375–380. doi:10.1007/s10973-009-0636-9. | |
dc.relation.referencesen | 1. Moya-Garzón, M. D., Higueras, M, Peñalver C., et al. (2018). Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type | |
dc.relation.referencesen | 2. J. Med. Chem, 61, 7144–7167. doi:10.1021/acs.jmedchem.8b0039. | |
dc.relation.referencesen | 3. Darren, R. W., Myung-Ryul, L., Young-Ah Song, et al. (2007). Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. So, 129(30), 9258–9259. doi: 10.1021/ja072817z. | |
dc.relation.referencesen | 4. Joseph, L. Duffy, Brian A. Kirk, Nancy J. Kevin, et al. (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett, 13, 3323–3326. doi:10.1016/S0960-894X (03)00680-2. | |
dc.relation.referencesen | 5. Karateev, A., Koryagin, A., Litvinov, D., et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19–23. | |
dc.relation.referencesen | 6. Neuhaus, W. C., Jemison, A., Kozlowski M. (2019). Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1–7. doi: 10.1021/acscatal.9b02608. | |
dc.relation.referencesen | 7. Wang, Y., Furukawa, S., Fu, X., Ning, Y. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1–97. doi: 10.1021/acscatal.9b03744. | |
dc.relation.referencesen | 8. Kos, R., Sobechko, I., Horak, Y., Sergeev, V., Dibrivnyi, V. (2017). Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research, 2 (2), 74–80. doi: 10.22606/mocr.2017.22006. | |
dc.relation.referencesen | 9. Dibrivnyi, V., Sobechko, I., Puniak, M., et al. (2015). Thermodynamic properties of 5(nitrophenyl) furan-2- carbaldehyde isomers. Chemistry Central Journal, 9:67, 1–8. doi: 10.1186/s13065-015-0144-x. | |
dc.relation.referencesen | 10. Dibrivnyi, V., Marshalek, A., Sobechko, I., et al. (2019). Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry, 105, 1–11. doi: 10.1186/s13065-019-0619-2. | |
dc.relation.referencesen | 11. Sobechko, I., Horak, Y., Dibrivnyi, V., Goshko, L., Kostyk, R. (2020). Thermodynamic properties of 2-methyl-5-(4-methylphenyl)-3-furancarboxylic acids. Visnyk of the Lviv University. Series Chemistry, 61(2), 314. https://doi.org/10.30970/vch.6102.314. | |
dc.relation.referencesen | 12. Sobechko, I. B., Dibrivnyi ,V. M., Gorak, Yu. I., Goshko, L.V. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5 (2), 30–36. doi: 10.23939/ctas2022.02.030. | |
dc.relation.referencesen | 13. Ribeiro da Silva, A. V. M., Monte, J. S. M. (1990). The construction, testing and use of a new Knudsen effusion apparatus. Thermochimica Acta, 171, 169–183. doi: 10.1016/0040-6031(90)87017-7. | |
dc.relation.referencesen | 14. Ginkel, C. H. D. van, Kruif, C. G. de, Waal, F. E. B. de. (2001). The need for temperature control in effusion experiments (and application to heat of sublimation determination). Journal of Physics E: Scientific Instruments, 8(6), 490–492. doi:10.1088/0022-3735/8/6/018. | |
dc.relation.referencesen | 15. Rossini, F. D. (1956). Experimental Thermochemistry. Interscience Publishers, 2, 326. | |
dc.relation.referencesen | 16. http://www.codata.info/resources/databases/key1.html. | |
dc.relation.referencesen | 17. Chickos, J. S., Acree, W. E. (2003). Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002. Journal of Physical and Chemical Reference Data, 32(2), 519–878. doi: 10.1063/1.1529214. | |
dc.relation.referencesen | 18. Sobechko, I. (2016). Salculation method of heat capacity change during organic compounds vaporization and sublimation. Chemistry & Chemical technology, 10(1), 27–33. doi: 10.23939/chcht10.01.027. | |
dc.relation.referencesen | 19. Benson, S. W. (1965). III – Bond energies. Journal of Chemical Education, 42(9), 502. doi:10.1021/ed042p502. | |
dc.relation.referencesen | 20. https://en.wikipedia.org/wiki/Joback_method. | |
dc.relation.referencesen | 21. Ribeiro, da Silva, M. A. V., Amaral, L. M. P. F. (2009). Standard molar enthalpies of formation of 2- furancarbonitrile, 2-acetylfuran, and 3-Furaldehyde. The Journal of Chemical Thermodynamics, 41(1), 26–29. https://doi.org/10.1016/j.jct.2008.08.004. | |
dc.relation.referencesen | 22. Roux, M. V., Temprado, M., Jiménez, P., Pérez- Parajón, Notario, R. (2003). Thermochemistry of Furancarboxylic Acids. The Journal of Physical Chemistry A, 107(51), 11460–11467. doi:10.1021/jp030772s. | |
dc.relation.referencesen | 23. Ribeiro da Silva, M. A. V., Amaral, L. M. P. F. (2010). Standard molar enthalpies of formation of some methylfuran derivatives. Journal of Thermal Analysis and Calorimetry, 100(2), 375–380. doi:10.1007/s10973-009-0636-9. | |
dc.relation.uri | https://doi.org/10.30970/vch.6102.314 | |
dc.relation.uri | http://www.codata.info/resources/databases/key1.html | |
dc.relation.uri | https://en.wikipedia.org/wiki/Joback_method | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2008.08.004 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | енергія згорання | |
dc.subject | ентальпія згорання | |
dc.subject | ентальпія утворення | |
dc.subject | ентальпія сублімації | |
dc.subject | 2-метил-5-фенілфуран-3-карбонова кислота | |
dc.subject | combustion energy | |
dc.subject | enthalpy of combustion | |
dc.subject | enthalpy of formation | |
dc.subject | enthalpy of sublimation | |
dc.subject | 2-methyl-5-phenylfuran-3-carboxylic acid | |
dc.title | Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic acid | |
dc.title.alternative | Термодинамічні властивості 2-метил-5-фенілфуран-3-карбонової кислоти | |
dc.type | Article |
Files
License bundle
1 - 1 of 1