Захист від корозії за допомогою інгібіторів з відновлювальної сировини. Огляд
| dc.citation.epage | 51 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 42 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Романчук, О. О. | |
| dc.contributor.author | Топільницький, П. І. | |
| dc.contributor.author | Романчук, В. В. | |
| dc.contributor.author | Зарічанська, М. І. | |
| dc.contributor.author | Romanchuk, M. O. | |
| dc.contributor.author | Topilnytskyi, P. I. | |
| dc.contributor.author | Romanchuk, V. V. | |
| dc.contributor.author | Zarichanska, M. I. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T08:00:06Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Наведено інформацію стосовно проблем корозії у нафтопереробній промисловості та масштабів втрат, пов’язаних з нею. Вказано причини корозії, пов’язані з наявністю в нафті сполук сірки, соляної кислоти та хлоридів, нафтенових кислот тощо. Наведено комплекс методів, спрямованих на зменшення корозійного впливу цих компонентів. Застосування інгібіторів – один з найефективніших та найпоширеніших методів. Використання інгібіторів корозії з відновлюваної сировини стає все популярнішим. Наведено огляд літературних джерел, пов’язаних із дослідженням “зелених” інгібіторів корозії. | |
| dc.description.abstract | The article provides information about corrosion problems in the oil refining industry and the scale of losses associated with it. The causes of corrosion associated with the presence of sulfur compounds, hydrochloric acid and chlorides, naphthenic acids, etc. in oil are described. A set of methods aimed at reducing the corrosion effect of these components is given. The use of inhibitors is one of the most effective and widespread such methods. The use of corrosion inhibitors from renewable raw materials is becoming more and more popular. The article provides an overview of literary sources related to the study of “green” corrosion inhibitors. | |
| dc.format.extent | 42-51 | |
| dc.format.pages | 10 | |
| dc.identifier.citation | Захист від корозії за допомогою інгібіторів з відновлювальної сировини. Огляд / О. О. Романчук, П. І. Топільницький, В. В. Романчук, М. І. Зарічанська // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 42–51. | |
| dc.identifier.citationen | Corrosion protection with the help of inhibitors from renewable raw materials. Review / M. O. Romanchuk, P. I. Topilnytskyi, V. V. Romanchuk, M. I. Zarichanska // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 42–51. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.042 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111757 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Impact.NACE.Org, (Accessed 13 Mar 2020) Retrieved from http://impact.nace.org/economic-impact.aspx | |
| dc.relation.references | 2. Brongers, M.P.H., Koch,G.H., Payer., J.H., Thompson, N.G., & Virmani, Y.P., (2002). Corrosion costs and preventive strategies in the United States Summary. NACE, 1-12. | |
| dc.relation.references | 3. Akande, O. S., Fayomi,I., & Odigie, S. (2019) Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview.Journal of Physics: Conference Series, 1378, 022037, IOP https://doi:10.1088/1742-6596/1378/2/022037 | |
| dc.relation.references | 4. Groysman. A. (2017). Corrosion problems and solutions in oil, gas, refining and petrochemical industry. Koroze a Ochrana Materialu, 61, pp. 100-117, https://doi:10.1515/kom-2017-0013 | |
| dc.relation.references | 5. Aisha H. Al-Moubaraki & Ime Bassey Obot (2021). Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. Journal of Saudi Chemical Society, 25 (12), 101370 https://doi.org/10.1016/j.jscs.2021.101370 | |
| dc.relation.references | 6. Ana L., Vetere A., & Lorezo Van W. (2013). Corrosion‐Related Accidents in Petroleum Refineries. Lessons learned from accidents in EU and OECD countries. Luxembourg: Publications Office of the European Union, 100 pp. doi: 10.2788/37909 | |
| dc.relation.references | 7. Sarpong, K.O., & Wills K.A., (2019). Survey on crude unit overhead corrosion control practices. In: Corrosion, Paper №13109. NACE International. | |
| dc.relation.references | 8. Chambers, B., Srinivasan, S., Kwei Meng Yap, & Yunovich, M. (2011). Corrosion in Crude Distillation Unit Overhead Operations: A Comprehensive Review. NACE, Paper No.11360. | |
| dc.relation.references | 9. Elnour, M. M., Ahmed I., M., & Ibrahim, M. T. (2014). Study the Effects of Naphthenic Acid in Crude Oil Equipment Corrosion. Journal of Applied and Industrial Sciences, 2 (6), 255-260 | |
| dc.relation.references | 10. Adilbekova, A., Kujawski, W., Mirzaeian M., & Faizullayev, S., (2022). Recent demulsification methods of crude oil emulsions. Brief review, Journal of Petroleum Science and Engineering, 215, (B), 110643, https://doi.org/10.1016/j.petrol.2022.110643 | |
| dc.relation.references | 11. Abdulredha, M. M., Aslina, H. S., & Luqman, C. A. (2020). Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry, Volume 13, Issue 1, Pages 3403-3428, https://doi.org/10.1016/j.arabjc.2018.11.014 | |
| dc.relation.references | 12. Abed, S. M., Abdurahman, N. H., Abdulbari, H.A., Akbari, S., & Yunus, R. M. (2019). Oil emulsions and the different recent demulsification techniques in the petroleum industry - A review. IOP Conference Series: Materials Science and Engineering, 702, 012060. https://doi.org/10.1088/1757-899X/702/1/012060 | |
| dc.relation.references | 13. Abubakar Abubakar Umar, Aliyu Adebayo Sulaimon, Ismail Bin Mohd Saaid, & Rashidah Bint Mohd Pilus (2018). A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. Journal of Petroleum Science and Engineering, 165, 673-690, https://doi.org/10.1016/j.petrol.2018.03.014 | |
| dc.relation.references | 14. Abdurahman, N.H., Awad, O.I., Kamil, M., Saad, M.A., & Yunus, R.M., (2019). An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes. 7:470. doi: 10.3390/pr7070470 | |
| dc.relation.references | 15. Boichenko S., Golych, Y., Romanchuk, V., & Topilnytskyy P. (2014). Physico-chemical properties and efficiency of demulsifiers based on block copolymers of ethylene and propylene oxides. Chemistry and Chemical Technology, 8(2), 211-218. doi: 10.23939/chcht08.02.211 | |
| dc.relation.references | 16. Eric Vetters. (2021). Neutralising amine selection for crude units. Digital refining. Processing, operations & maintenance. Retrieved from https://www.digitalrefining.com/article/1002636/neutralising-amine-selection-for-crude-units | |
| dc.relation.references | 17. Brzeszcz,J., & Turkiewicz, A. (2015). Corrosion inhibitors-application in oil industry. Nafta-Gaz, 2, 67-75. Retrieved from http://archiwum.inig.pl/INST/nafta-gaz/nafta-gaz/Nafta-Gaz-2015-02-01.pdf | |
| dc.relation.references | 18. Husin, H. & Tamalmani, K. (2020).Review on corrosion inhibitors for oil and gas corrosion issues. Appl. Sci. 10(10), 3389, 1-16. https://doi.org/10.3390/app10103389 | |
| dc.relation.references | 19. Yahya T. Al-Janabi. (2020). Corrosion Inhibitors for Refinery Operations. Corrosion Inhibitors in the Oil and Gas Industry, 1-39. https://doi.org/10.1002/9783527822140.ch9 | |
| dc.relation.references | 20. Solomon, M.M., & Umoren, S.A., (2014). Recent developments on the use of polymers as corrosion inhibitors-a review. Open Mater. Sci. J., 8 (1), 39-54. https://doi.10.2174/1874088X01408010039 | |
| dc.relation.references | 21. Advincula, R.C., & Tiu, B.D.B., (2015). Polymeric corrosion inhibitors for the oil and gas industry: design principles and mechanism. React. Funct. Polym., 95, 25-45, https://doi.10.1016/j.reactfunctpolym.2015.08.006 | |
| dc.relation.references | 22. Alfantazi, A., Chandrabhan, V., Kyong Yop Rhee, & Quraishi, M.A., (2021) Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications. International Journal of Biological Macromolecules, (184), 135-143. https://doi.org/10.1016/j.ijbiomac.2021.06.049 | |
| dc.relation.references | 23. Romanchuk, V., Topilnytskyy, P., & Yarmola, T. (2018). Production of corrosion inhibitors for oil refining equipment using natural components. Chemistry and Chemical Technology, 12(3), 400-404 https://doi.org/10.23939/chcht12.03.400 | |
| dc.relation.references | 24. Asogwa, F.C., Agobi, A.U., Abiola, B.A., Abeng, F.E., Abang A.I.,, N.A.Ikeuba, Adalikwu, S.A., Ntibi, J.E., Okafor, P.C., Ita, B.I., Omang, B.J., Eno, E.A., & Loius, H., (2023). Kinetic and thermodynamic evaluation of azithromycinas a green corrosion inhibitor during acid cleaning process of mild steel using an experimental and theoretical approach. Resultsin Chemistr, 5. doi:10.1016/j.rechem.2023.100909. | |
| dc.relation.references | 25. Khan Ch. K., Romanchuk V.V., & Topilnytskyy P.I., (2017). Doslidgennya antykoroziynych vlastyvostey potenciynych inhibitoriv korozii, pryznachenych dlya naftopererobnoi promysvosti. Visnyk NTU "HPI", №44(1266), 104-110. | |
| dc.relation.references | 26. A.M. Abdel-Gaber, Essam Khamis Al-Hanash, Hisham A Abo-eldahab Shaimaa Adee (2008). Inhibition of Aluminium Corrosion in Alkaline Solutions Using Natural Compound. The Arabian Journal for Science and Engineering, 34 (2C), 61-69. DOI:10.1016/j.matchemphys.2007.11.038. | |
| dc.relation.references | 27. Doroshenko T.Ph., Gorban O.O., & Skrypnyk Yu.G.(2021). Perspectyvnist stvorennya efectyvnych inhibitoriv korozii na osnovi rosnynnoi syrovyny. Phizyko-organichna chimiya, pharmacologia, ta pharmacevtychna technologia biologichno aknytvnych rechovyn: zbirnyk naukovych prac . 3, 45-57. | |
| dc.relation.references | 28. Chidiebere M. A., Ogukwe C. E., Oguzie K. L., Eneh C. N., & Oguzie E. E. (2012).Corrosion Inhibition and Adsorption Behavior of Punica granatum Extract on Mild Steel in Acidic Environments: Experimental and Theoretical Studies. Ind. Eng. Chem. Res., 51(2), 668-677. https://doi.org/10.1021/ie201941f | |
| dc.relation.references | 29. Arinkoola A. O., Agbede O. O., Ogunleye O. O., Eletta O. A., Osho Y. A., Morakinyo A. F., Hamed J. O. (2020). Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon, 6(1), e03205. DOI:10.1016/j.heliyon.2020.e03205 | |
| dc.relation.references | 30. Ayeni F.A., et al.(2014). Investigation of Sida acuta (Wire Weed) Plant Extract as Corrosion Inhibitor for Aluminium-Copper-Magnessium Alloy in Acidic Medium. J. Min. Mater. Charact. Eng., 2(4), 286-291. https://doi.org/10.4236/jmmce.2014.24033. | |
| dc.relation.references | 31. Ebenso E. E. (2003). Corrosion Inhibition Studies of Some Plant Extracts on Aluminium in Acidic Medium. Mater. Chem. Phys., 79, 58-62. https://doi.org/10.1016/S0254-0584(02)00446-7. | |
| dc.relation.references | 32. Ambrish Singh, Ishtiaque Ahamad, Mumtaz A. (2016). Quraishi Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, 9, Supplement 2, S1584-S1589. https://doi.org/10.1016/j.arabjc.2012.04.029 | |
| dc.relation.references | 33. Haldhar,R., Prasad, D., Saxena, A., Singh, P., (2018) Valeriana wallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study. Mater. Chem. Front., 2, 1225-1237 DOI: 10.1039/C8QM00120K | |
| dc.relation.references | 34. Anozie, R.C., Chukwudubem, I.E., Ekerenam, O.O. and Emori, W., Ikeuba, A.I., Sonde, C.U., Ugi, B.U., & Onyeachu, B., (2023). Electrochemical evaluation of the anti-corrosion potential of selected amino acids on magnesium in aqueous sodium chloride solutions, Anti-Corrosion Methods and Materials, 70 (5), 252-258. https://doi.org/10.1108/ACMM-04-2023-2796 | |
| dc.relation.references | 35. Gupta,N. K., Joshi, P.G., Srivastava,V.,& Quraishi, M.A. (2018). Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry. International Journal of Biological Macromolecules, 106, 704-711 https://doi.org/10.1016/j.ijbiomac.2017.08.064 | |
| dc.relation.references | 36. Guanben Du, Xianghong Li, Shuduan Deng, Tong Lin, & Xiaoguang Xie,(2020). Cassava starch ternary graft copolymer as a corrosion inhibitor for steel in HCl solution. Journal of Materials Research and Technology, 9, Issue 2, 2196-2207 https://doi.org/10.1016/j.jmrt.2019.12.050 | |
| dc.relation.references | 37. M. Mobin, M. A. Khan, M. (2011). Parveen Inhibition of mild steel corrosion in acidic medium using starch and surfactants additive. Journal of Applied Polimer Science. 121(3), 1558-1565 https://doi.org/10.1002/app.33714 | |
| dc.relation.references | 38. C. Wu, F. Chen, X. Wang, H.-J. Kim, G.-q. He, V. Haley-Zitlin, G.(2006). Huang Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification. Food Chem., 96 (2), 220-227. DOI:10.1016/j.foodchem.2005.02.024 https://doi.org/10.1016/j.foodchem.2005.02.024 | |
| dc.relation.references | 39. Mallahi, T., Saharkhiz, M.J., Javanmardi, J. (2018). Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecol. Sin., 38 (5), 351-355. https://doi.org/10.1016/j.chnaes.2018.02.003 | |
| dc.relation.references | 40. Bokai Liao, Zongyi Zhou, Xuehong Min, Shan Wan, Jinhang Liu, & Xingpeng Guo (2023) A novel green corrosion inhibitor extracted from waste feverfew root for carbon steel in H2SO4 solution. Results in Engineering, 17, 100971/ https://doi.org/10.1016/j.rineng.2023.100971 | |
| dc.relation.references | 41. Choon Chieh Ong, Khairiah Abd Karim (2017).Inhibitory Effect of Red Onion Skin Extract on the Corrosion of Mild Steel in Acidic Medium. Chemical Engineering Transactions, 56,913-918. DOI:10.3303/CET1756153 | |
| dc.relation.references | 42. Agus Paul Setiawan Kaban, Wahyu Mayangsari, Mochammad Syaiful Anwar, Ahmad Maksum, Rini Riastuti, Taufik Aditiyawarman, & Johny Wahyuadi Soedarsono (2022). Experimental and modelling waste rice husk ash as a novel green corrosion inhibitor under acidic environment. Materials Today: Proceedings, 62(6), 4225-4234 https://doi.org/10.1016/j.matpr.2022.04.738 | |
| dc.relation.references | 43. Alghamdi, M. (2023). Green nanomaterials and nanocomposites for corrosion inhibition applications. Corrosion Reviews, 41(3) DOI: 10.1515/corrrev-2022-0075 https://doi.org/10.1515/corrrev-2022-0075 | |
| dc.relation.references | 44. Eno E. Ebenso, Chandrabhan, V., Quraishi, M.A. (2017). Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. Journal of Molecular Liquids, 233, 403-414 / https://doi.org/10.1016/j.molliq.2017.02.111 | |
| dc.relation.referencesen | 1. Impact.NACE.Org, (Accessed 13 Mar 2020) Retrieved from http://impact.nace.org/economic-impact.aspx | |
| dc.relation.referencesen | 2. Brongers, M.P.H., Koch,G.H., Payer., J.H., Thompson, N.G., & Virmani, Y.P., (2002). Corrosion costs and preventive strategies in the United States Summary. NACE, 1-12. | |
| dc.relation.referencesen | 3. Akande, O. S., Fayomi,I., & Odigie, S. (2019) Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview.Journal of Physics: Conference Series, 1378, 022037, IOP https://doi:10.1088/1742-6596/1378/2/022037 | |
| dc.relation.referencesen | 4. Groysman. A. (2017). Corrosion problems and solutions in oil, gas, refining and petrochemical industry. Koroze a Ochrana Materialu, 61, pp. 100-117, https://doi:10.1515/kom-2017-0013 | |
| dc.relation.referencesen | 5. Aisha H. Al-Moubaraki & Ime Bassey Obot (2021). Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. Journal of Saudi Chemical Society, 25 (12), 101370 https://doi.org/10.1016/j.jscs.2021.101370 | |
| dc.relation.referencesen | 6. Ana L., Vetere A., & Lorezo Van W. (2013). Corrosion‐Related Accidents in Petroleum Refineries. Lessons learned from accidents in EU and OECD countries. Luxembourg: Publications Office of the European Union, 100 pp. doi: 10.2788/37909 | |
| dc.relation.referencesen | 7. Sarpong, K.O., & Wills K.A., (2019). Survey on crude unit overhead corrosion control practices. In: Corrosion, Paper No 13109. NACE International. | |
| dc.relation.referencesen | 8. Chambers, B., Srinivasan, S., Kwei Meng Yap, & Yunovich, M. (2011). Corrosion in Crude Distillation Unit Overhead Operations: A Comprehensive Review. NACE, Paper No.11360. | |
| dc.relation.referencesen | 9. Elnour, M. M., Ahmed I., M., & Ibrahim, M. T. (2014). Study the Effects of Naphthenic Acid in Crude Oil Equipment Corrosion. Journal of Applied and Industrial Sciences, 2 (6), 255-260 | |
| dc.relation.referencesen | 10. Adilbekova, A., Kujawski, W., Mirzaeian M., & Faizullayev, S., (2022). Recent demulsification methods of crude oil emulsions. Brief review, Journal of Petroleum Science and Engineering, 215, (B), 110643, https://doi.org/10.1016/j.petrol.2022.110643 | |
| dc.relation.referencesen | 11. Abdulredha, M. M., Aslina, H. S., & Luqman, C. A. (2020). Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry, Volume 13, Issue 1, Pages 3403-3428, https://doi.org/10.1016/j.arabjc.2018.11.014 | |
| dc.relation.referencesen | 12. Abed, S. M., Abdurahman, N. H., Abdulbari, H.A., Akbari, S., & Yunus, R. M. (2019). Oil emulsions and the different recent demulsification techniques in the petroleum industry - A review. IOP Conference Series: Materials Science and Engineering, 702, 012060. https://doi.org/10.1088/1757-899X/702/1/012060 | |
| dc.relation.referencesen | 13. Abubakar Abubakar Umar, Aliyu Adebayo Sulaimon, Ismail Bin Mohd Saaid, & Rashidah Bint Mohd Pilus (2018). A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. Journal of Petroleum Science and Engineering, 165, 673-690, https://doi.org/10.1016/j.petrol.2018.03.014 | |
| dc.relation.referencesen | 14. Abdurahman, N.H., Awad, O.I., Kamil, M., Saad, M.A., & Yunus, R.M., (2019). An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes. 7:470. doi: 10.3390/pr7070470 | |
| dc.relation.referencesen | 15. Boichenko S., Golych, Y., Romanchuk, V., & Topilnytskyy P. (2014). Physico-chemical properties and efficiency of demulsifiers based on block copolymers of ethylene and propylene oxides. Chemistry and Chemical Technology, 8(2), 211-218. doi: 10.23939/chcht08.02.211 | |
| dc.relation.referencesen | 16. Eric Vetters. (2021). Neutralising amine selection for crude units. Digital refining. Processing, operations & maintenance. Retrieved from https://www.digitalrefining.com/article/1002636/neutralising-amine-selection-for-crude-units | |
| dc.relation.referencesen | 17. Brzeszcz,J., & Turkiewicz, A. (2015). Corrosion inhibitors-application in oil industry. Nafta-Gaz, 2, 67-75. Retrieved from http://archiwum.inig.pl/INST/nafta-gaz/nafta-gaz/Nafta-Gaz-2015-02-01.pdf | |
| dc.relation.referencesen | 18. Husin, H. & Tamalmani, K. (2020).Review on corrosion inhibitors for oil and gas corrosion issues. Appl. Sci. 10(10), 3389, 1-16. https://doi.org/10.3390/app10103389 | |
| dc.relation.referencesen | 19. Yahya T. Al-Janabi. (2020). Corrosion Inhibitors for Refinery Operations. Corrosion Inhibitors in the Oil and Gas Industry, 1-39. https://doi.org/10.1002/9783527822140.ch9 | |
| dc.relation.referencesen | 20. Solomon, M.M., & Umoren, S.A., (2014). Recent developments on the use of polymers as corrosion inhibitors-a review. Open Mater. Sci. J., 8 (1), 39-54. https://doi.10.2174/1874088X01408010039 | |
| dc.relation.referencesen | 21. Advincula, R.C., & Tiu, B.D.B., (2015). Polymeric corrosion inhibitors for the oil and gas industry: design principles and mechanism. React. Funct. Polym., 95, 25-45, https://doi.10.1016/j.reactfunctpolym.2015.08.006 | |
| dc.relation.referencesen | 22. Alfantazi, A., Chandrabhan, V., Kyong Yop Rhee, & Quraishi, M.A., (2021) Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications. International Journal of Biological Macromolecules, (184), 135-143. https://doi.org/10.1016/j.ijbiomac.2021.06.049 | |
| dc.relation.referencesen | 23. Romanchuk, V., Topilnytskyy, P., & Yarmola, T. (2018). Production of corrosion inhibitors for oil refining equipment using natural components. Chemistry and Chemical Technology, 12(3), 400-404 https://doi.org/10.23939/chcht12.03.400 | |
| dc.relation.referencesen | 24. Asogwa, F.C., Agobi, A.U., Abiola, B.A., Abeng, F.E., Abang A.I.,, N.A.Ikeuba, Adalikwu, S.A., Ntibi, J.E., Okafor, P.C., Ita, B.I., Omang, B.J., Eno, E.A., & Loius, H., (2023). Kinetic and thermodynamic evaluation of azithromycinas a green corrosion inhibitor during acid cleaning process of mild steel using an experimental and theoretical approach. Resultsin Chemistr, 5. doi:10.1016/j.rechem.2023.100909. | |
| dc.relation.referencesen | 25. Khan Ch. K., Romanchuk V.V., & Topilnytskyy P.I., (2017). Doslidgennya antykoroziynych vlastyvostey potenciynych inhibitoriv korozii, pryznachenych dlya naftopererobnoi promysvosti. Visnyk NTU "HPI", No 44(1266), 104-110. | |
| dc.relation.referencesen | 26. A.M. Abdel-Gaber, Essam Khamis Al-Hanash, Hisham A Abo-eldahab Shaimaa Adee (2008). Inhibition of Aluminium Corrosion in Alkaline Solutions Using Natural Compound. The Arabian Journal for Science and Engineering, 34 (2C), 61-69. DOI:10.1016/j.matchemphys.2007.11.038. | |
| dc.relation.referencesen | 27. Doroshenko T.Ph., Gorban O.O., & Skrypnyk Yu.G.(2021). Perspectyvnist stvorennya efectyvnych inhibitoriv korozii na osnovi rosnynnoi syrovyny. Phizyko-organichna chimiya, pharmacologia, ta pharmacevtychna technologia biologichno aknytvnych rechovyn: zbirnyk naukovych prac . 3, 45-57. | |
| dc.relation.referencesen | 28. Chidiebere M. A., Ogukwe C. E., Oguzie K. L., Eneh C. N., & Oguzie E. E. (2012).Corrosion Inhibition and Adsorption Behavior of Punica granatum Extract on Mild Steel in Acidic Environments: Experimental and Theoretical Studies. Ind. Eng. Chem. Res., 51(2), 668-677. https://doi.org/10.1021/ie201941f | |
| dc.relation.referencesen | 29. Arinkoola A. O., Agbede O. O., Ogunleye O. O., Eletta O. A., Osho Y. A., Morakinyo A. F., Hamed J. O. (2020). Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon, 6(1), e03205. DOI:10.1016/j.heliyon.2020.e03205 | |
| dc.relation.referencesen | 30. Ayeni F.A., et al.(2014). Investigation of Sida acuta (Wire Weed) Plant Extract as Corrosion Inhibitor for Aluminium-Copper-Magnessium Alloy in Acidic Medium. J. Min. Mater. Charact. Eng., 2(4), 286-291. https://doi.org/10.4236/jmmce.2014.24033. | |
| dc.relation.referencesen | 31. Ebenso E. E. (2003). Corrosion Inhibition Studies of Some Plant Extracts on Aluminium in Acidic Medium. Mater. Chem. Phys., 79, 58-62. https://doi.org/10.1016/S0254-0584(02)00446-7. | |
| dc.relation.referencesen | 32. Ambrish Singh, Ishtiaque Ahamad, Mumtaz A. (2016). Quraishi Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arabian Journal of Chemistry, 9, Supplement 2, S1584-S1589. https://doi.org/10.1016/j.arabjc.2012.04.029 | |
| dc.relation.referencesen | 33. Haldhar,R., Prasad, D., Saxena, A., Singh, P., (2018) Valeriana wallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study. Mater. Chem. Front., 2, 1225-1237 DOI: 10.1039/P.8QM00120K | |
| dc.relation.referencesen | 34. Anozie, R.C., Chukwudubem, I.E., Ekerenam, O.O. and Emori, W., Ikeuba, A.I., Sonde, C.U., Ugi, B.U., & Onyeachu, B., (2023). Electrochemical evaluation of the anti-corrosion potential of selected amino acids on magnesium in aqueous sodium chloride solutions, Anti-Corrosion Methods and Materials, 70 (5), 252-258. https://doi.org/10.1108/ACMM-04-2023-2796 | |
| dc.relation.referencesen | 35. Gupta,N. K., Joshi, P.G., Srivastava,V.,& Quraishi, M.A. (2018). Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry. International Journal of Biological Macromolecules, 106, 704-711 https://doi.org/10.1016/j.ijbiomac.2017.08.064 | |
| dc.relation.referencesen | 36. Guanben Du, Xianghong Li, Shuduan Deng, Tong Lin, & Xiaoguang Xie,(2020). Cassava starch ternary graft copolymer as a corrosion inhibitor for steel in HCl solution. Journal of Materials Research and Technology, 9, Issue 2, 2196-2207 https://doi.org/10.1016/j.jmrt.2019.12.050 | |
| dc.relation.referencesen | 37. M. Mobin, M. A. Khan, M. (2011). Parveen Inhibition of mild steel corrosion in acidic medium using starch and surfactants additive. Journal of Applied Polimer Science. 121(3), 1558-1565 https://doi.org/10.1002/app.33714 | |
| dc.relation.referencesen | 38. C. Wu, F. Chen, X. Wang, H.-J. Kim, G.-q. He, V. Haley-Zitlin, G.(2006). Huang Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification. Food Chem., 96 (2), 220-227. DOI:10.1016/j.foodchem.2005.02.024 https://doi.org/10.1016/j.foodchem.2005.02.024 | |
| dc.relation.referencesen | 39. Mallahi, T., Saharkhiz, M.J., Javanmardi, J. (2018). Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecol. Sin., 38 (5), 351-355. https://doi.org/10.1016/j.chnaes.2018.02.003 | |
| dc.relation.referencesen | 40. Bokai Liao, Zongyi Zhou, Xuehong Min, Shan Wan, Jinhang Liu, & Xingpeng Guo (2023) A novel green corrosion inhibitor extracted from waste feverfew root for carbon steel in H2SO4 solution. Results in Engineering, 17, 100971/ https://doi.org/10.1016/j.rineng.2023.100971 | |
| dc.relation.referencesen | 41. Choon Chieh Ong, Khairiah Abd Karim (2017).Inhibitory Effect of Red Onion Skin Extract on the Corrosion of Mild Steel in Acidic Medium. Chemical Engineering Transactions, 56,913-918. DOI:10.3303/CET1756153 | |
| dc.relation.referencesen | 42. Agus Paul Setiawan Kaban, Wahyu Mayangsari, Mochammad Syaiful Anwar, Ahmad Maksum, Rini Riastuti, Taufik Aditiyawarman, & Johny Wahyuadi Soedarsono (2022). Experimental and modelling waste rice husk ash as a novel green corrosion inhibitor under acidic environment. Materials Today: Proceedings, 62(6), 4225-4234 https://doi.org/10.1016/j.matpr.2022.04.738 | |
| dc.relation.referencesen | 43. Alghamdi, M. (2023). Green nanomaterials and nanocomposites for corrosion inhibition applications. Corrosion Reviews, 41(3) DOI: 10.1515/corrrev-2022-0075 https://doi.org/10.1515/corrrev-2022-0075 | |
| dc.relation.referencesen | 44. Eno E. Ebenso, Chandrabhan, V., Quraishi, M.A. (2017). Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. Journal of Molecular Liquids, 233, 403-414, https://doi.org/10.1016/j.molliq.2017.02.111 | |
| dc.relation.uri | http://impact.nace.org/economic-impact.aspx | |
| dc.relation.uri | https://doi:10.1088/1742-6596/1378/2/022037 | |
| dc.relation.uri | https://doi:10.1515/kom-2017-0013 | |
| dc.relation.uri | https://doi.org/10.1016/j.jscs.2021.101370 | |
| dc.relation.uri | https://doi.org/10.1016/j.petrol.2022.110643 | |
| dc.relation.uri | https://doi.org/10.1016/j.arabjc.2018.11.014 | |
| dc.relation.uri | https://doi.org/10.1088/1757-899X/702/1/012060 | |
| dc.relation.uri | https://doi.org/10.1016/j.petrol.2018.03.014 | |
| dc.relation.uri | https://www.digitalrefining.com/article/1002636/neutralising-amine-selection-for-crude-units | |
| dc.relation.uri | http://archiwum.inig.pl/INST/nafta-gaz/nafta-gaz/Nafta-Gaz-2015-02-01.pdf | |
| dc.relation.uri | https://doi.org/10.3390/app10103389 | |
| dc.relation.uri | https://doi.org/10.1002/9783527822140.ch9 | |
| dc.relation.uri | https://doi.10.2174/1874088X01408010039 | |
| dc.relation.uri | https://doi.10.1016/j.reactfunctpolym.2015.08.006 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2021.06.049 | |
| dc.relation.uri | https://doi.org/10.23939/chcht12.03.400 | |
| dc.relation.uri | https://doi.org/10.1021/ie201941f | |
| dc.relation.uri | https://doi.org/10.4236/jmmce.2014.24033 | |
| dc.relation.uri | https://doi.org/10.1016/S0254-0584(02)00446-7 | |
| dc.relation.uri | https://doi.org/10.1016/j.arabjc.2012.04.029 | |
| dc.relation.uri | https://doi.org/10.1108/ACMM-04-2023-2796 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2017.08.064 | |
| dc.relation.uri | https://doi.org/10.1016/j.jmrt.2019.12.050 | |
| dc.relation.uri | https://doi.org/10.1002/app.33714 | |
| dc.relation.uri | https://doi.org/10.1016/j.foodchem.2005.02.024 | |
| dc.relation.uri | https://doi.org/10.1016/j.chnaes.2018.02.003 | |
| dc.relation.uri | https://doi.org/10.1016/j.rineng.2023.100971 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2022.04.738 | |
| dc.relation.uri | https://doi.org/10.1515/corrrev-2022-0075 | |
| dc.relation.uri | https://doi.org/10.1016/j.molliq.2017.02.111 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | корозія | |
| dc.subject | захист від корозії | |
| dc.subject | інгібітори | |
| dc.subject | corrosion | |
| dc.subject | corrosion protection | |
| dc.subject | inhibitors | |
| dc.title | Захист від корозії за допомогою інгібіторів з відновлювальної сировини. Огляд | |
| dc.title.alternative | Corrosion protection with the help of inhibitors from renewable raw materials. Review | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1